相關(guān)習(xí)題
 0  231161  231169  231175  231179  231185  231187  231191  231197  231199  231205  231211  231215  231217  231221  231227  231229  231235  231239  231241  231245  231247  231251  231253  231255  231256  231257  231259  231260  231261  231263  231265  231269  231271  231275  231277  231281  231287  231289  231295  231299  231301  231305  231311  231317  231319  231325  231329  231331  231337  231341  231347  231355  266669 

科目: 來源: 題型:選擇題

19.已知△ABC的三個內(nèi)角A,B,C所對的邊長分別為a,b,c,G為三角形的重心,且滿足a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,則角C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目: 來源: 題型:解答題

18.(1)某校共有學(xué)生2000名,各年級男、女生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到二年級女生的概率是0.18,現(xiàn)用分層抽樣的方法在全校100名學(xué)生,求應(yīng)在三年級抽取的學(xué)生人數(shù);
一年級二年級三年級
女生373xy
男生377370z
(2)甲乙兩個班級進(jìn)行一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表:
班級與成績列聯(lián)表
優(yōu)秀不優(yōu)秀
甲班1030
乙班1228
根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.1的前提下認(rèn)為成績與班級有關(guān)系?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232,0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知正三棱錐P-ABC底面邊長為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個時刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是(  )
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,△ABC中,∠ABC=90°,∠C=30°,AB=1,D為AC中點(diǎn),AE⊥BD于點(diǎn)E,延長AE交BC于點(diǎn)F,沿BD將△ABC折成四面體A-BCD.
(1)若M是FC的中點(diǎn),求證:直線DM∥平面AEF;
(2)若cos∠AEF=$\frac{1}{3}$,求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知橢圓C的中心在原點(diǎn),對稱軸為坐標(biāo)軸,過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),($\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)斜率為k的直線l交橢圓于A,B兩點(diǎn),若$\overrightarrow{OA}$$•\overrightarrow{OB}$=2,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

14.人如圖,在四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,∠BAD=60°,AB=2AD,AP⊥BD.
(1)證明:平面ABD⊥平面PAD;
(2)若PA與平面ABCD所成的角為60°,AD=2,PA=PD,求點(diǎn)C到平面PAB的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在正方體ABCD-A1B1C1D1中,棱長是1,E、F分別是AB、BC的中點(diǎn),H是DD1上任意一點(diǎn).
(1)證明:EF∥平面A1C1H;
(2)若H是DD1的中點(diǎn),求H到平面A1C1FE的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0),F(xiàn)是C的焦點(diǎn),縱坐標(biāo)為2的定點(diǎn)M在拋物線上,且滿足$\overrightarrow{OM}$•$\overrightarrow{MF}$=-4,過點(diǎn)F作直線l與C相交于A,B兩點(diǎn),記A(x1,y1),B(x2,y2).
(1)求曲線C的方程;
(2)設(shè)l的斜率為1,求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的大;
(3)設(shè)$\overrightarrow{FB}$=λ$\overrightarrow{AF}$,若λ∈[4,9],求l在y軸上截距的變化范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在直三棱柱ABA1中,D1C=$\sqrt{2}$a,DD1=DA=DC=a,點(diǎn)E、F分別是BC、DC的中點(diǎn).
(1)證明:AF⊥ED1
(2)求點(diǎn)E到平面AFD1的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(1)求圓C1和圓C2的交點(diǎn)的極坐標(biāo);
(2)若直線l經(jīng)過圓C1和圓C2的一個交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案