相關習題
 0  231289  231297  231303  231307  231313  231315  231319  231325  231327  231333  231339  231343  231345  231349  231355  231357  231363  231367  231369  231373  231375  231379  231381  231383  231384  231385  231387  231388  231389  231391  231393  231397  231399  231403  231405  231409  231415  231417  231423  231427  231429  231433  231439  231445  231447  231453  231457  231459  231465  231469  231475  231483  266669 

科目: 來源: 題型:填空題

16.已知一個平行六面體的各棱長都等于2,并且以頂點A為端點的各棱間的夾角都等于60°,則該平行六面體中平面ABB1A1與平面ABCD夾角的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別是A1B1,BC,C1D1和B1C1的中點.
(1)求證:平面MNF⊥平面NEF;
(2)求二面角M-EF-N的平面角正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分別是PC、PD的中點,PA=$\sqrt{3}$AD.
(1)在線段BC上求作一點G,使得平面EFG∥平面PAB;
(2)在(1)的條件下,求平面EFG與平面PCD所成的二面角的大。

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖所示,已知SA=AB=BC=1,以SC為斜邊的Rt△SAC≌Rt△SBC,且$\overrightarrow{AC}•\overrightarrow{SB}=\frac{3}{4}$.
(1)求二面角A-SB-C的余弦值;
(2)求異面直線AS,BC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知Rt△ABC,斜邊BC?α,點A∈α,AO⊥α,O為垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大。

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=$\frac{3}{2}$AC,D是AC的中點.
(1)求點B1到平面A1BD的距離.
(2)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在正方體AC1中.
(1)平面A1ADD1與平面ABCD所成的二面角的度數(shù);
(2)平面ABC1D1與平面ABCD所成的二面角的度數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求證:BD⊥平面ACC1A1;
(Ⅱ)若C1C=$\frac{\sqrt{6}}{2}$AB,求二面角C1-BD-C的大。

查看答案和解析>>

科目: 來源: 題型:解答題

8.觀察教室相鄰的兩個墻面與地面可以構成幾個二面角?分別指出構成這些二面角的面、棱、平面角及其度數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知二面角α-l-β的平面角為θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,則θ=120°.

查看答案和解析>>

同步練習冊答案