相關(guān)習(xí)題
 0  232251  232259  232265  232269  232275  232277  232281  232287  232289  232295  232301  232305  232307  232311  232317  232319  232325  232329  232331  232335  232337  232341  232343  232345  232346  232347  232349  232350  232351  232353  232355  232359  232361  232365  232367  232371  232377  232379  232385  232389  232391  232395  232401  232407  232409  232415  232419  232421  232427  232431  232437  232445  266669 

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上為減函數(shù),若f(1-a)+f(1-2a)<0求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+$\frac{1}{x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,S1=1,S2=-$\frac{3}{2}$,且Sn-Sn-2=3×(-$\frac{1}{2}$)n-1(n≥3),則an=$\left\{\begin{array}{l}{4-3×(\frac{1}{2})^{n-1},n為奇數(shù)}\\{-4+3×(\frac{1}{2})^{n-1},n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)函數(shù)g(x)=ax2-2lnx.
(1)討論g(x)的單調(diào)性.
(2)設(shè)h(x)=$\frac{1-3a}{2}{x}^{2}+(2+a)lnx-x$(a≠1),f(x)=g(x)+h(x),若存在x0≥1使得f(x0)$<\frac{a}{a-1}$,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知直線l1:4x-3y+6=0和直線l2:x=-$\frac{p}{2}$(p>0).若拋物線C:y2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(I)求拋物線C的方程;
(II)若以拋物線上任意一點(diǎn)M為切點(diǎn)的直線l與直線l2交于點(diǎn)N,試問在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.運(yùn)行如圖框圖中程序,輸出的結(jié)果是( 。
A.30B.31C.32D.63

查看答案和解析>>

科目: 來源: 題型:解答題

19.一小袋中有3只紅色、3只白色的乒乓球(其體積、質(zhì)地完成相同),從袋中隨機(jī)摸出3個(gè)球,
(1)摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?br />(2)摸出的3個(gè)球?yàn)?個(gè)紅球1個(gè)白球的概率是多少?

查看答案和解析>>

科目: 來源: 題型:填空題

18.(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,則a2+a3+…+a9+a10=20.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,則(  )
A.若S9>S8,S9>S10,則S17>0,S18<0B.若S17>0,S18<0,則S9>S8,S8>S10
C.若S17>0,S18<0,則a17>0,a18<0D.若a17>0,a18<0,則S17>0,S18<0

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角是60°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|x$\overrightarrow{a}$+y$\overrightarrow$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{a}$-y$\overrightarrow$|的最大值是( 。
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案