相關(guān)習(xí)題
 0  237744  237752  237758  237762  237768  237770  237774  237780  237782  237788  237794  237798  237800  237804  237810  237812  237818  237822  237824  237828  237830  237834  237836  237838  237839  237840  237842  237843  237844  237846  237848  237852  237854  237858  237860  237864  237870  237872  237878  237882  237884  237888  237894  237900  237902  237908  237912  237914  237920  237924  237930  237938  266669 

科目: 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知圓C:x2+y2-4x-1=0與x軸正半軸的交點(diǎn)為D.
(1)若直線m:ax-2y+a+2=0(a>0)與圓C相切,求a的值;
(2)過原點(diǎn)O的直線l與圓C交于A,B兩點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=x|x-a|.
(1)當(dāng)a=1時,寫出函數(shù)f(x)的增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a);
(3)(2)中g(shù)(a)滿足g(a)-m≥0對任意實(shí)數(shù)a恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+({a+1})x+2a,({x>0})\\{log_a}({x+1})+1,({-1<x≤0})\end{array}\right.$,(a<0,a≠1),若函數(shù)y=|f(x)|在$[{-\frac{1}{3},+∞})$上單調(diào)遞增,且關(guān)于x的方程|f(x)|=x+3恰有兩個不同的實(shí)根,則a的取值范圍為( 。
A.$[{\frac{3}{2},2})$B.$({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$C.{2,6}D.$[{\frac{3}{2},\frac{5}{3}}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.用與球心距離為1的平面去截球所得的截面面積為π,則球的表面積為( 。
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=-x2+ax-4lnx-a+1(a∈R).
(1)若$f({\frac{1}{2}})+f(2)=0$,求a的值;
(2)若存在${x_0}∈({1,\frac{{3+\sqrt{5}}}{2}})$,使函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))和點(diǎn)$({\frac{1}{{{x_0},}},f({\frac{1}{x_0}})})$處的切線互相垂直,求a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間(1,+∞)上有兩個極值點(diǎn),則是否存在實(shí)數(shù)m,使f(x)<m對任意的x∈[1,+∞)恒成立?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知等差數(shù)列{an }中,a2+a6=6,Sn 為其前n項(xiàng)和,S5=$\frac{35}{3}$.
(1)求數(shù)列{an }的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=6{cos^2}x-2\sqrt{3}sinxcosx$+2.
(1)求f(x)的最小正周期和值域;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f(B)=2.求角B.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N+),則n=3.(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)

查看答案和解析>>

科目: 來源: 題型:填空題

12.如圖,在棱長均相等的正四棱錐P-ABCD最終,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點(diǎn),有下列結(jié)論:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直線PD與直線MN所成角的大小為90°.
其中正確結(jié)論的序號是①②③.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.如圖,在邊長為2的正三角形ABC中,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→A的方向前進(jìn),然后再回到點(diǎn)A,在此過程中,即點(diǎn)P走過的路程為x,點(diǎn)P到點(diǎn)A,B,C的距離之和為f(x),則函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案