相關(guān)習(xí)題
 0  238390  238398  238404  238408  238414  238416  238420  238426  238428  238434  238440  238444  238446  238450  238456  238458  238464  238468  238470  238474  238476  238480  238482  238484  238485  238486  238488  238489  238490  238492  238494  238498  238500  238504  238506  238510  238516  238518  238524  238528  238530  238534  238540  238546  238548  238554  238558  238560  238566  238570  238576  238584  266669 

科目: 來源: 題型:選擇題

18.如圖是八位同學(xué)400米測試成績的莖葉圖(單位:秒),則( 。
A.平均數(shù)為64B.眾數(shù)為7C.極差為17D.中位數(shù)為64.5

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z滿足$\frac{z+1}{z-2}=1-3i$,則|z|=(  )
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.在下列結(jié)論中①“p∧q”為真是“p∨q”為真的充分不必要條件;②“p∧q”為假是“p∨q”為真的充分不必要條件;③“p∧q”為真是“?p”為假的充分不必要條件;④“?p”為真是“p∧q”為假的充分不必要條件.正確的是①③④.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知關(guān)于x的方程sinx+cosx=m在[0,π]有兩個不等的實根,則m的一個值是( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點,焦點F1,F(xiàn)2在x軸上,離心率為$\frac{1}{2}$,點P為橢圓上一點,且△PF1F2的周長為12,那么C的方程為( 。
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)集合U={1,2,3,4,5},集合A={x∈Z|x2-5x+4<0},集合B={1,2},則(∁UA)∩B=( 。
A.{1}B.{1,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=2,且$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,則{an}的通項公式為an=n+1.

查看答案和解析>>

科目: 來源: 題型:填空題

11.下列命題中,正確的命題序號是①③④.
①已知a∈R,兩直線l1:ax+y=1,l2:x+ay=2a,則“a=-1”是“l(fā)1∥l2”的充分條件;
②命題p:“?x≥0,2x>x2”的否定是“?x0≥0,2x0<x02”;
③“sinα=$\frac{1}{2}$”是“α=2kπ+$\frac{π}{6}$,k∈Z”的必要條件;
④已知a>0,b>0,則“ab>1”的充要條件是“a>$\frac{1}$”.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知菱形ABCD的邊長為2,∠ABC=60°,點E滿足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,則$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設(shè)函數(shù)f'(x)是定義在(0,π)上的函數(shù)f(x)的導(dǎo)函數(shù),有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,則( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

同步練習(xí)冊答案