相關(guān)習(xí)題
 0  238930  238938  238944  238948  238954  238956  238960  238966  238968  238974  238980  238984  238986  238990  238996  238998  239004  239008  239010  239014  239016  239020  239022  239024  239025  239026  239028  239029  239030  239032  239034  239038  239040  239044  239046  239050  239056  239058  239064  239068  239070  239074  239080  239086  239088  239094  239098  239100  239106  239110  239116  239124  266669 

科目: 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)是定義在R上的以5為周期的奇函數(shù),若$f(2)>1,f(3)=\frac{{{a^2}+a+3}}{a-3}$,則a的取值范圍是(-∞,-2)∪(0,3).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.若x、y滿足$\left\{\begin{array}{l}x+y-2≥0\\ kx-y+2≥0\\ y≥0\end{array}\right.$,且z=y-x的最小值為-6,則k的值為( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.如圖所示是一個(gè)三棱錐的三視圖,則此三棱錐的外接球的體積為(  )
A.$\frac{4}{3}π$B.$\frac{{\sqrt{3}}}{2}π$C.$\frac{{5\sqrt{5}}}{6}π$D.$\sqrt{6}π$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.命題p:若1<y<x,0<a<1,則 ${a^{\frac{1}{x}}}<{a^{\frac{1}{y}}}$,命題q:若1<y<x,a<0,則xa<ya.在命題①p且q②p或q③非p④非q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.設(shè)f(x)是定義在R上的周期為3的函數(shù),當(dāng)x∈[-2,1)時(shí),$f(x)=\left\{\begin{array}{l}4{x^2}-2,-2≤x≤0\\ x,0<x<1\end{array}\right.$,則$f(\frac{5}{2})$=( 。
A.0B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.在等差數(shù)列{an}中,前n項(xiàng)和為Sn,$\frac{S_2}{S_4}=\frac{1}{3}$,則$\frac{S_4}{S_8}$等于( 。
A.$\frac{3}{10}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知全集U=R,$A=\left\{{x\left|{-2<x<\frac{1}{2}}\right.}\right\},B=\left\{{x\left|{x≤0}\right.}\right\},C=\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$,則集合C=(  )
A.A∩BB.U(A∩B)C.A∪(∁UB)D.U(A∪B)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知直線l:$\left\{\begin{array}{l}{x=a+tsinα}\\{y=b+tcosα}\end{array}\right.$(t為參數(shù))
(1)當(dāng)α=$\frac{π}{3}$時(shí),求直線l的斜率;
(2)若P(a,b)是圓O:x2+y2=4內(nèi)部一點(diǎn),l與圓O交于A、B兩點(diǎn),且|PA|,|OP|,|PB|成等比數(shù)列,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2-xlnx-2
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在區(qū)間[a,b]⊆[$\frac{1}{2}$,+∞),使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.在ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知2acosA=ccosB+bcosC.
(Ⅰ)求cosA的值;
(Ⅱ)若a=1,cos2$\frac{B}{2}$+cos2$\frac{C}{2}$=1+$\frac{\sqrt{3}}{4}$,求邊c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案