相關(guān)習(xí)題
 0  239499  239507  239513  239517  239523  239525  239529  239535  239537  239543  239549  239553  239555  239559  239565  239567  239573  239577  239579  239583  239585  239589  239591  239593  239594  239595  239597  239598  239599  239601  239603  239607  239609  239613  239615  239619  239625  239627  239633  239637  239639  239643  239649  239655  239657  239663  239667  239669  239675  239679  239685  239693  266669 

科目: 來源: 題型:解答題

16.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動點,求PQ中點M到直線C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t為參數(shù))距離的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.若$|\overrightarrow a|=2$,$|\overrightarrow b|=1$,且$\overrightarrow a$與$\overrightarrow b$夾角為60°,則$|2\overrightarrow a-\overrightarrow b|$=$\sqrt{13}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)甲、乙兩樓相距10m,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則甲、乙兩樓的高分別是( 。
A.$\frac{10\sqrt{3}}{3}$m,$\frac{40}{3}$$\sqrt{3}$ mB.10$\sqrt{3}$ m,20$\sqrt{3}$ mC.10($\sqrt{3}$-$\sqrt{2}$) m,20$\sqrt{3}$ mD.10$\sqrt{3}$ m,$\frac{40}{3}$$\sqrt{3}$ m

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在△ABC中,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$,P是BN上的一點,若$\overrightarrow{AP}$=$\frac{5}{11}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,則實數(shù)λ的值為(  )
A.$\frac{9}{11}$B.$\frac{5}{11}$C.$\frac{3}{11}$D.$\frac{2}{11}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{9}{2}n,(n∈{N^*})$
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${c_n}=\frac{1}{{(2{a_n}-9)(2{a_n}-7)}}$,數(shù)列{cn}的前n項和為Tn,求使不等式${T_n}>\frac{k}{2017}$對一切n∈N*都成立的正整數(shù)k的最大值;
(3)設(shè)$f(n)=\left\{\begin{array}{l}{a_n},(n=2k-1,k∈{N^*})\\ 3{a_n}-13,(n=2k,k∈{N^*})\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在△ABC中,a,b,c分別為三個內(nèi)角A,B,C的對邊,若$cosBcosC-sinBsinC=\frac{1}{2}$,$a=2\sqrt{3}$
(1)求A;
(2)若b=2,求c邊長;
(3)若b+c=4,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}為等差數(shù)列,且a1=1,a5=5,等比數(shù)列{bn}的前n項和${S_n}=2-\frac{1}{{{2^{n-1}}}},(n∈{N^*})$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=anbn(n=1,2,3,…),Tn為數(shù)列{cn}的前n項和,求Tn

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知x>0,y>0,求證:$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.解關(guān)于x的不等式x2-(a+1)x+a≥0(a∈R).

查看答案和解析>>

科目: 來源: 題型:填空題

7.如圖所示,已知A、B、C是一條直路上的三點,AB與BC各等于2km,從三點分別遙望塔M,在A處看見塔在北偏東45°方向,在B處看塔在正東方向,在點C處看見塔在南偏東60°方向,則塔M到直路ABC的最短距離為$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

同步練習(xí)冊答案