相關(guān)習(xí)題
 0  240143  240151  240157  240161  240167  240169  240173  240179  240181  240187  240193  240197  240199  240203  240209  240211  240217  240221  240223  240227  240229  240233  240235  240237  240238  240239  240241  240242  240243  240245  240247  240251  240253  240257  240259  240263  240269  240271  240277  240281  240283  240287  240293  240299  240301  240307  240311  240313  240319  240323  240329  240337  266669 

科目: 來源: 題型:解答題

11.已知f(x)=(1+$\frac{1}{tanx}$)sin2x-2sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$).
(Ⅰ)若sinθ+cosθ=$\frac{3}{\sqrt{5}}$,其中$\frac{π}{4}$$<θ<\frac{π}{2}$,求f(θ)的值;
(Ⅱ)當(dāng)$\frac{π}{12}$≤x$≤\frac{π}{2}$時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),對(duì)于任意x∈R滿足f(-x)=f(x),且相鄰兩條對(duì)稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求函數(shù)$y=f(x)+f({x+\frac{π}{4}})$的單調(diào)減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x+α的最大值與最小值之和為-2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求使得函數(shù)f(x)≥0成立的x的集合.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為$\frac{{\sqrt{2}}}{10}$,$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求sin(α-β)的值;
(Ⅱ)求α+2β的值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)y=cos2x+2cos(x+$\frac{π}{2}$),則y的取值范圍是[-3,$\frac{3}{2}$].

查看答案和解析>>

科目: 來源: 題型:填空題

6.計(jì)算$\frac{2sin10°}{cos70°}$-$\frac{1}{tan20°}$=$-\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)不共線的非零向量,若2$\overrightarrow{a}$+k$\overrightarrow$與k$\overrightarrow{a}$+$\overrightarrow$共線,則k的值是$±\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知f(x)是定義在R上的偶函數(shù),在[0,+∞)上是增函數(shù),若a=f(sin$\frac{12π}{7}$),b=f(cos$\frac{5π}{7}$),c=f(tan$\frac{2π}{7}$),則(  )
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若直線xcosα+ysinα-1=0與圓(x-1)2+(y-sinα)2=$\frac{1}{16}$相切,α為銳角,則斜率k=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若函數(shù)f(x)=cos(2x+θ)(0<θ<π)的圖象關(guān)于(π,0)對(duì)稱,則函數(shù)f(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值是( 。
A.-$\sqrt{3}$B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案