相關(guān)習(xí)題
 0  240361  240369  240375  240379  240385  240387  240391  240397  240399  240405  240411  240415  240417  240421  240427  240429  240435  240439  240441  240445  240447  240451  240453  240455  240456  240457  240459  240460  240461  240463  240465  240469  240471  240475  240477  240481  240487  240489  240495  240499  240501  240505  240511  240517  240519  240525  240529  240531  240537  240541  240547  240555  266669 

科目: 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為${F_1}{、_{_1}}{F_2}$,點B是雙曲線的右頂點,A是其虛軸的端點,如圖所示.若${S_{△AB{F_2}}}=\frac{1}{4}{S_{△AOB}}$,則雙曲線的兩條漸近線的夾角(銳角或直角)的正切值為( 。
A.$\frac{5}{4}$B.$\frac{24}{7}$C.$-\frac{21}{24}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.(1)判斷函數(shù)f(x)=-x2+4x-2在區(qū)間[0,3]的單調(diào)性以及最大值和最小值;
(2)已知函數(shù)f(x)=$\frac{x}{x-1}$.
①求f(1+x)+f(1-x)的值;
②證明函數(shù)f(x)在(1,+∞)上是減函數(shù)(差分法).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$定義域為( 。
A.{1}B.{-1}C.{(-1,1)}D.{-1,1}

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知$\overrightarrow a$=(-2,2),$\overrightarrow b$=(1,0),若向量$\overrightarrow c$=(1,-2)使$\overrightarrow a$-λ$\overrightarrow b$共線,則λ=-1.

查看答案和解析>>

科目: 來源: 題型:解答題

14.長方體ABCD-A1B1C1D1中,$A{A_1}=\sqrt{2}$,AB=1,AD=2,E為BC的中點.設(shè)△A1DE的重心為G,問是否存在實數(shù)λ,使得$\overrightarrow{AM}=λ\overrightarrow{AD}$,且MG⊥平面A1DE同時成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1,設(shè)棱長為a,過BD且與直線AC1平行的截面面積是(  )
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若集合A={x||2x-1|<3},$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$,則A∩∁RB=( 。
A.$\left\{{\left.x\right|-1<x<\frac{1}{2}或2<x<3}\right\}$B.$(-\frac{1}{2},2)$
C.$\left\{{\left.x\right|-1<x<-\frac{1}{2}}\right\}$D.$(-1,-\frac{1}{2}]$

查看答案和解析>>

科目: 來源: 題型:填空題

11.過圓C:(x-2)2+y2=4 上的點A $({3,\sqrt{3}})$ 的切線方程為x+$\sqrt{3}$y-6=0.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然對數(shù)的底數(shù),
(1)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性
(2)當(dāng)a>1時,若存在x0∈[-1,1],使得f(x0)≤e-1,求實數(shù)b的取值范圍.(參考公式:(ax)'=axlna)

查看答案和解析>>

科目: 來源: 題型:解答題

9.計算下列各式的值
(1)$\frac{A_8^8-A_9^5}{2A_8^5+4A_8^4}$
(2)$C_{3n}^{9-n}+C_8^{2n+1}$(n∈N*

查看答案和解析>>

同步練習(xí)冊答案