相關(guān)習(xí)題
 0  240608  240616  240622  240626  240632  240634  240638  240644  240646  240652  240658  240662  240664  240668  240674  240676  240682  240686  240688  240692  240694  240698  240700  240702  240703  240704  240706  240707  240708  240710  240712  240716  240718  240722  240724  240728  240734  240736  240742  240746  240748  240752  240758  240764  240766  240772  240776  240778  240784  240788  240794  240802  266669 

科目: 來源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x-[x],x≥0\\ f(x+1)\;,x<0\end{array}\right.$其中[x]表示不超過x的最大整數(shù)如[-1.5]=-2,[2.5]=2,若直線y=k(x-1)(k<0)與函數(shù)y=f(x)的圖象只有三個不同的交點(diǎn),則k的取值范圍為( 。
A.$[-\frac{1}{2},-\frac{1}{3}]$B.$(-\frac{1}{2},-\frac{1}{3})$C.$(-1,-\frac{1}{2}]$D.$(-1,-\frac{1}{2})$

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=sinx•cosx-\sqrt{3}cos({π+x})•cosx({x∈R})$.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)的圖象向右、向上分別平移$\frac{π}{4}、\frac{{\sqrt{3}}}{2}$個單位長度得到y(tǒng)=g(x)的圖象,求y=g(x)在$({0,\frac{π}{4}}]$的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,an=2n,bn=50-3n,cn=$\left\{\begin{array}{l}{{a}_{n}{,a}_{n}{>b}_{n}}\\{_{n}{,a}_{n}{<b}_{n}}\end{array}\right.$.
(1)求c4與c8的等差中項(xiàng);
(2)當(dāng)n>5時,設(shè)數(shù)列{Sn}的前n項(xiàng)和為Tn
(ⅰ)求Tn;
(ⅱ)當(dāng)n>5時,判斷數(shù)列{Tn-34ln}的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow$|=6,|$\overrightarrow$|=|$\overrightarrow{c}$|,且$\overrightarrow$⊥$\overrightarrow{c}$,則|$\overrightarrow$-$\overrightarrow{c}$|的取值范圍為( 。
A.[4,8]B.[4$\sqrt{2}$,8$\sqrt{2}$]C.(4,8)D.(4$\sqrt{2}$,8$\sqrt{2}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知雙曲線過點(diǎn)(2,$\sqrt{3}$),且一條漸近線方程為y=$\frac{1}{2}$x,則該曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

4.不等式(a-3)x2+2(a-3)x-4<0對于一切x∈R恒成立,那么a的取值范圍是(  )
A.(-∞,-3)B.(-1,3]C.(-∞,-3]D.(-3,3]

查看答案和解析>>

科目: 來源: 題型:解答題

3.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(其中t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-2mρcosθ-4=0(其中m>0)
(1)點(diǎn)M的直角坐標(biāo)為(2,2),且點(diǎn)M在曲線C內(nèi),求實(shí)數(shù)m的取值范圍;
(2)若m=2,當(dāng)α變化時,求直線被曲線C截得的弦長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosϕ}\\{y=sinϕ}\end{array}}$(ϕ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ(tanα•cosθ-sinθ)=1.(其中α為常數(shù),α∈(0,π),且α≠$\frac{π}{2}$),點(diǎn)A,B(A在x軸下方)是曲線C1與C2的兩個不同的交點(diǎn).
(1)求曲線C1的普通方程與C2的直角坐標(biāo)方程;
(2)求|AB|的最大值及此時點(diǎn)B的直角坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:選擇題

1.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則下列命題中的真命題是( 。
①將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,則所得函數(shù)的圖象關(guān)于原點(diǎn)對稱;
②將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,則所得函數(shù)的圖象關(guān)于原點(diǎn)對稱;
③當(dāng)x∈[$\frac{π}{2}$,π]時,函數(shù)f(x)的最大值為$\sqrt{2}$;
④當(dāng)x∈[$\frac{π}{2}$,π]時,函數(shù)f(x)的最大值為$\frac{{\sqrt{6}}}{2}$.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,直四棱柱ABCD-A1B1C1D1,底面ABCD為平行四邊形,且AB=AD=1,AA1=$\frac{{\sqrt{6}}}{2}$,∠ABC=60°.
(1)求證:AC⊥BD1
(2)求四面體D1-AB1C的體積.

查看答案和解析>>

同步練習(xí)冊答案