相關(guān)習(xí)題
 0  240704  240712  240718  240722  240728  240730  240734  240740  240742  240748  240754  240758  240760  240764  240770  240772  240778  240782  240784  240788  240790  240794  240796  240798  240799  240800  240802  240803  240804  240806  240808  240812  240814  240818  240820  240824  240830  240832  240838  240842  240844  240848  240854  240860  240862  240868  240872  240874  240880  240884  240890  240898  266669 

科目: 來源: 題型:選擇題

18.已知數(shù)列{an}滿足an+1=2an,且${a_3}-{a_1}=2\sqrt{3}$,則$\frac{1}{a_1^2}+\frac{1}{a_2^2}+…+\frac{1}{a_n^2}$=( 。
A.$1-\frac{1}{4^n}$B.$\frac{1}{4}({4^n}-1)$C.$\frac{3}{2}(1-\frac{1}{2^n})$D.$\frac{1}{16}(1-\frac{1}{4^n})$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知等差數(shù)列{an}中,a2=1,a6=21,則a4=( 。
A.22B.16C.11D.5

查看答案和解析>>

科目: 來源: 題型:解答題

16.在直角坐標平面內(nèi),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=4sinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-2\sqrt{3}+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若對?x∈[0,+∞),不等式2ax≤ex-1恒成立,則實數(shù)a的最大值是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

14.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ是參數(shù)),則曲線C的形狀是(  )
A.線段B.直線C.射線D.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-lnx-1.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上遞增,求實數(shù)a的取值范圍;
(2)求證:$ln(n+2)<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n+1}\;(n∈{N^*})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)(1+x)n=a0+a1x+a2x2+…+anxn,若a1+a2+…+an=63,則展開式中系數(shù)最大項是( 。
A.20B.20x3C.105D.105x4

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知X的分布列為:
X-101
P$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
設(shè)Y=2X+3,則Y的期望E(Y)=( 。
A.3B.1C.0D.4

查看答案和解析>>

科目: 來源: 題型:解答題

10.在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如表:
年     份2008200920102011201220132014
年份代號t1234567
人均純收入y2.73.63.34.65.45.76.2
對變量t與y進行相關(guān)性檢驗,得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=alnx-x2
(1)當a=2時,求函數(shù)y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x))在區(qū)間(0,3)上為單調(diào)遞增函數(shù),求a的取值范圍;
(3)當a=2時,函數(shù)h(x)=f(x)-mx的圖象與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的導(dǎo)函數(shù).若正常數(shù)α,β滿足條件α+β=1,β≥α.試比較h'(αx1+βx2)與0的關(guān)系,并給出理由.

查看答案和解析>>

同步練習(xí)冊答案