科目: 來源: 題型:
【題目】設(shè)函數(shù) ,若曲線 上存在(x0 , y0),使得f(f(y0))=y0成立,則實(shí)數(shù)m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過的直線為,原點(diǎn)到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點(diǎn)C,D,問是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點(diǎn),且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時(shí),P到面ABC的距離為( )
A.2
B.3
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn).
(1)求直線C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=e2x+ln(x+a).
(1)當(dāng)a=1時(shí),①求f(x)在(0,1)處的切線方程;②當(dāng)x≥0時(shí),求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com