科目: 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 | ||||
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?
熱衷關(guān)心民生大事 | 不熱衷關(guān)心民生大事 | 總計(jì) | |
青年 | 12 | ||
中年 | 5 | ||
總計(jì) | 30 |
(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機(jī)抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ=4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng),以上正確說法的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】記無窮數(shù)列的前n項(xiàng)中最大值為,最小值為,令,數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為.
(1)若數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請(qǐng)證明;若不是,請(qǐng)舉例說明;
(3)若,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)是否存在實(shí)數(shù),同時(shí)滿足下列條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),其值域?yàn)?/span>.若存在,求出,的值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量/萬噸 | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的線性回歸方程;
(2)利用(1)中所求出的線性回歸方程預(yù)測該地2018年的糧食需求量.
參考公式:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓M:(a>b>0)的離心率為,左右頂點(diǎn)分別為A,B,線段AB的長為4.P在橢圓M上且位于第一象限,過點(diǎn)A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點(diǎn)C.
(1)若點(diǎn)C的橫坐標(biāo)為﹣1,求P點(diǎn)的坐標(biāo);
(2)直線l1與橢圓M的另一交點(diǎn)為Q,且,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,(,).
(1)當(dāng)cos=時(shí),求小路AC的長度;
(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高二年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測評(píng)結(jié)果的影響,采用分層抽樣方法從高二年級(jí)抽取了45名學(xué)生的測評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表2:女生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊列聯(lián)表:
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | 總計(jì) |
(2)試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“測評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考數(shù)據(jù)與公式:,其中.
臨界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com