科目: 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
① ②是等邊三角形 ③AB與平面BCD所成的角是 ④AB與CD所成角為,其中錯誤的結(jié)論個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】若存在常數(shù),使得對定義域內(nèi)的任意,都有成立,則稱函數(shù)在其定義域 上是“利普希茲條件函數(shù)”.
(1)若函數(shù)是“利普希茲條件函數(shù)”,求常數(shù)的最小值;
(2)判斷函數(shù)是否是“利普希茲條件函數(shù)”,若是,請證明,若不是,請說明理由;
(3)若是周期為2的“利普希茲條件函數(shù)”,證明:對任意的實(shí)數(shù),都有.
查看答案和解析>>
科目: 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個“可等域區(qū)間”.給出下列4個函數(shù):
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若.則a,b中至少有一個不小于1”的逆命題是一個真命題
B.命題“負(fù)數(shù)的平方是正數(shù)”是特稱命題
C.命題“設(shè)a,,若,則或”是一個真命題
D.常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為橢圓C上一點(diǎn),且的中點(diǎn)B在y軸上,.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若直線交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線ON交直線于點(diǎn)M,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形中,,,且,點(diǎn)是中點(diǎn),現(xiàn)將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置.
(Ⅰ)求證:平面平面;
(Ⅱ)若與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓(常數(shù)),P是曲線C上的動點(diǎn),M是曲線C的右頂點(diǎn),定點(diǎn)A的坐標(biāo)為.
(1)若M與A重合,求曲線C的焦距.
(2)若,求的最大值與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知三棱錐A-BPC中,,M為AB的中點(diǎn),D為PB的中點(diǎn),且為正三角形.
(1)求證:平面APC;
(2)若,,求三棱錐D-BCM的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com