科目: 來源: 題型:
【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關(guān)于日最高氣溫(單位:)的散點(diǎn)圖.
數(shù)據(jù):
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)請(qǐng)?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量關(guān)于日最高氣溫的線性回歸方程;
(2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請(qǐng)用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?
附:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直線AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)在線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AP,AB,AD兩兩垂直,BC∥AD,且AP=AB=AD=4,BC=2.
(1)求二面角P-CD-A的余弦值;
(2)已知H為線段PC上異于C的點(diǎn),且DC=DH,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).
(1)求異面直線AP,BM所成角的余弦值;
(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,P為棱C1D1的中點(diǎn),Q為棱BB1上的點(diǎn),且BQ=λBB1(λ≠0).
(1)若λ=,求AP與AQ所成角的余弦值;
(2)若直線AA1與平面APQ所成的角為45°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.
(1)求異面直線AC與BE所成角的余弦值;
(2)求二面角F-BC1-C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AC⊥BC,O為AB中點(diǎn),且DC⊥平面ABC,DC∥BE.已知AC=BC=DC=BE=2.
(1)求直線AD與CE所成角;
(2)求二面角O-CE-B的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長(zhǎng)AB=3,側(cè)棱AA1=2,E是棱CC1的中點(diǎn),點(diǎn)F滿足 =2.
(1)求異面直線FE和DB1所成角的余弦值;
(2)記二面角E-B1F-A的大小為θ,求|cosθ|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com