例8.已知向量,
(1) 求的值;
(2) (2)若的值。
解:(1)因?yàn)?/p>
所以
又因?yàn)椋裕?/p>
即;
(2) ,
又因?yàn),所?,
,所以,所以
例7.已知向量
,且,
(1)求函數(shù)的表達(dá)式;
(2)若,求的最大值與最小值。
解:(1),,,又,
所以,
所以,即;
(2)由(1)可得,令導(dǎo)數(shù),解得,列表如下:
t
-1
(-1,1)
1
(1,3)
導(dǎo)數(shù)
0
-
0
+
極大值
遞減
極小值
遞增
而所以。
例6.在中,a、b、c分別是角A、B、C的對(duì)邊,且,
(1)求的值;
(2)若,且a=c,求的面積。
解:(1)由正弦定理及,有,
即,所以,
又因?yàn),,所以,因(yàn),所以,又,所以?/p>
(2)在中,由余弦定理可得,又,
所以有,所以的面積為
。
例5.已知函數(shù)
(Ⅰ)將f(x)寫(xiě)成的形式,并求其圖象對(duì)稱中心的橫坐標(biāo);
(Ⅱ)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,試求x的范圍及此時(shí)函數(shù)f(x)的值域.
解:
(Ⅰ)由=0即
即對(duì)稱中心的橫坐標(biāo)為
(Ⅱ)由已知b2=ac
即的值域?yàn)?
綜上所述, , 值域?yàn)?nbsp;.
說(shuō)明:本題綜合運(yùn)用了三角函數(shù)、余弦定理、基本不等式等知識(shí),還需要利用數(shù)形結(jié)合的思想來(lái)解決函數(shù)值域的問(wèn)題,有利于培養(yǎng)學(xué)生的運(yùn)算能力,對(duì)知識(shí)進(jìn)行整合的能力。
例4. 已知函數(shù)y=cos2x+sinx?cosx+1 (x∈R),
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖像可由y=sinx(x∈R)的圖像經(jīng)過(guò)怎樣的平移和伸縮變換得到?
解:(1)y=cos2x+sinx?cosx+1= (2cos2x-1)+ +(2sinx?cosx)+1
=cos2x+sin2x+=(cos2x?sin+sin2x?cos)+
=sin(2x+)+
所以y取最大值時(shí),只需2x+=+2kπ,(k∈Z),即 x=+kπ,(k∈Z)。
所以當(dāng)函數(shù)y取最大值時(shí),自變量x的集合為{x|x=+kπ,k∈Z}
(2)將函數(shù)y=sinx依次進(jìn)行如下變換:
(i)把函數(shù)y=sinx的圖像向左平移,得到函數(shù)y=sin(x+)的圖像;
(ii)把得到的圖像上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)y=sin(2x+)的圖像;
(iii)把得到的圖像上各點(diǎn)縱坐標(biāo)縮短到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)y=sin(2x+)的圖像;
(iv)把得到的圖像向上平移個(gè)單位長(zhǎng)度,得到函數(shù)y=sin(2x+)+的圖像。
綜上得到y(tǒng)=cos2x+sinxcosx+1的圖像。
說(shuō)明:本題是2000年全國(guó)高考試題,屬中檔偏容易題,主要考查三角函數(shù)的圖像和性質(zhì)。這類題一般有兩種解法:一是化成關(guān)于sinx,cosx的齊次式,降冪后最終化成y=sin (ωx+)+k的形式,二是化成某一個(gè)三角函數(shù)的二次三項(xiàng)式。本題(1)還可以解法如下:當(dāng)cosx=0時(shí),y=1;當(dāng)cosx≠0時(shí),y=+1=+1
化簡(jiǎn)得:2(y-1)tan2x-tanx+2y-3=0
∵tanx∈R,∴△=3-8(y-1)(2y-3) ≥0,解之得:≤y≤
∴ymax=,此時(shí)對(duì)應(yīng)自變量x的值集為{x|x=kπ+,k∈Z}
例3.已知函數(shù)。
(1)求的最小正周期、的最大值及此時(shí)x的集合;
(2)證明:函數(shù)的圖像關(guān)于直線對(duì)稱。
解:
(1)所以的最小正周期,因?yàn)椋?/p>
所以,當(dāng),即時(shí),最大值為;
(2)證明:欲證明函數(shù)的圖像關(guān)于直線對(duì)稱,只要證明對(duì)任意,有成立,
因?yàn)椋?/p>
,
所以成立,從而函數(shù)的圖像關(guān)于直線對(duì)稱。
例2.求函數(shù)的值域。
解:設(shè),則原函數(shù)可化為
,因?yàn),所?/p>
當(dāng)時(shí),,當(dāng)時(shí),,
所以,函數(shù)的值域?yàn)椤?/p>
例1.已知,求(1);(2)的值.
解:(1);
(2)
.
說(shuō)明:利用齊次式的結(jié)構(gòu)特點(diǎn)(如果不具備,通過(guò)構(gòu)造的辦法得到),進(jìn)行弦、切互化,就會(huì)使解題過(guò)程簡(jiǎn)化。
4.解答三角高考題的策略。
(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的“差異分析”。
(2)尋找聯(lián)系:運(yùn)用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。
(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)墓,促使差異的轉(zhuǎn)化。
3.證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com