13.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=9,S3=15.
(1)求Sn;
(2)設(shè)數(shù)列$\{\frac{1}{S_n}\}$的前n項(xiàng)和為Tn,證明:${T_n}<\frac{3}{4}$.

分析 (1)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的求和公式和通項(xiàng)公式,求得首項(xiàng)和公差,即可得到所求和;
(2)求得$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡整理,再由不等式的性質(zhì)即可得證.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
S3=$\frac{1}{2}$(a1+a3)×3=3a2=15⇒a2=5,
∴$d=\frac{{{a_4}-{a_2}}}{2}=2$,a1=3,
∴an=3+2(n-1)=2n+1,
${S_n}=\frac{3+2n+1}{2}•n=n(n+2)$;
(2)證明:$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
則${T_n}=\frac{1}{1×3}+\frac{1}{2×4}+…+\frac{1}{n(n+2)}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,以及數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.由表格中的數(shù)據(jù)可以判定函數(shù)f(x)=lnx-x+2的一個(gè)零點(diǎn)所在的區(qū)間是(k,k+1)(k∈Z),則k的值為( 。
x12345
lnx00.691.101.391.61
x-2-10123
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知兩圓相交于A(-1,3),B(-6,m)兩點(diǎn),且這兩圓的圓心均在直線x-y+c=0上,則m+2c的值為( 。
A.-1B.26C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,求
(1)a1+a2+a3+a4
(2)(a0+a2+a42-(a1+a32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn),過坐標(biāo)原點(diǎn)的直線依次與雙曲線C的左、右支交于點(diǎn)P,Q,若|PQ|=2|QF|,∠PQF=60°,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$1+\sqrt{3}$C.$2+\sqrt{3}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值為2,求a的值;
(2)若對(duì)?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從5個(gè)不同的小球中選4個(gè)放入3個(gè)箱子中,要求第一個(gè)箱子放入1個(gè)小球,第二個(gè)箱子放入2個(gè)小球,第三個(gè)箱子放入1個(gè)小球,則不同的放法共有( 。
A.120種B.96種C.60種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且經(jīng)過點(diǎn)P(-1,2)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.y2=$\frac{1}{4}$xB.y2=-$\frac{1}{4}$xC.y2=-4xD.x2=-4y

查看答案和解析>>

同步練習(xí)冊(cè)答案