分析 根據(jù)題意畫出圖形,結合圖形用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出向量$\overrightarrow{AP}$,求$\overrightarrow{AP}•(\overrightarrow{AB}+\overrightarrow{AC})$即可.
解答 解:如圖所示,
△ABC中,AB=AC=3,BC=4,P為BC邊上的動點,
∴$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$
=$\overrightarrow{AB}$+λ$\overrightarrow{BC}$
=$\overrightarrow{AB}$+λ($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,
∴$\overrightarrow{AP}•(\overrightarrow{AB}+\overrightarrow{AC})$=(1-λ)${\overrightarrow{AB}}^{2}$+λ${\overrightarrow{AC}}^{2}$+$\overrightarrow{AB}$•$\overrightarrow{AC}$
=(1-λ)×32+λ×32+3×3×$\frac{{3}^{2}{+3}^{2}{-4}^{2}}{2×3×3}$
=10.
故答案為:10.
點評 本題考查了平面向量的線性運算與數(shù)量積運算問題,是基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{21}{58}$ | B. | $\frac{12}{29}$ | C. | $\frac{21}{64}$ | D. | $\frac{7}{27}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $9+4({\sqrt{2}+\sqrt{5}})c{m^2}$ | B. | $10+2({\sqrt{2}+\sqrt{3}})c{m^2}$ | C. | $11+2({\sqrt{2}+\sqrt{5}})c{m^2}$ | D. | $11+2({\sqrt{2}+\sqrt{3}})c{m^2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com