9.若集合A={x|x>0},B={x|x<1},則A∩B={x|0<x<1}.

分析 利用交集定義直接求解.

解答 解:∵集合A={x|x>0},B={x|x<1},
∴A∩B={x|0<x<1}.
故答案為:{x|0<x<1}.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AB∥CD,AB=AD=2,CD=1,側(cè)面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形
(1)證明:AD⊥PB;
(2)若三棱錐C-PBD的體積等于$\frac{1}{2}$,問(wèn):是否存在過(guò)點(diǎn)C的平面CMN,分別交PB、AB于點(diǎn)M,N,使得平面CMN∥平面PAD?若存在,求出△CMN的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列滿(mǎn)足條件的圓的方程
(1)圓心為C(2,-2)且過(guò)點(diǎn)P(6,3)的圓的方程
(2)己知點(diǎn)A(-4,-5),B(6,-1),求以線(xiàn)段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{1}{3}n{a_n}+{a_n}-c$(c是常數(shù),n∈N*),a2=6.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)證明:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿(mǎn)足a1=3,an+1=2an-n+1,數(shù)列{bn}滿(mǎn)足b1=2,bn+1=bn+an-n.
(1)證明:{an-n}為等比數(shù)列;
(2)數(shù)列{cn}滿(mǎn)足${c_n}=\frac{{{a_n}-n}}{{({b_n}+1)({b_{n+1}}+1)}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)向量$\overrightarrow{m}$=(x,y),$\overrightarrow{n}$=(x-y),P為曲線(xiàn)$\overrightarrow{m}$•$\overrightarrow{n}$=1(x>0)上的一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線(xiàn)x-y+1=0的距離大于λ恒成立,則實(shí)數(shù)λ的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若存在實(shí)數(shù)a,b,對(duì)任意實(shí)數(shù)x∈[0,4],使不等式$\sqrt{x}$-m≤ax+b≤$\sqrt{x}$+m恒成立,則m的取值范圍為( 。
A.m≥1B.m≤1C.m≤$\frac{1}{4}$D.m≥$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(Ⅰ)計(jì)算:$\frac{1}{2}lg2+\sqrt{{{(lg\sqrt{2})}^2}-lg2+1}-\root{3}{{\sqrt{a^9}•\sqrt{{a^{-3}}}}}÷\root{3}{{\frac{{\sqrt{{a^{13}}}}}{{\sqrt{a^7}}}}}$,a>0;
(Ⅱ)已知$a={3^{{{log}_2}6-{{log}_3}\frac{1}{5}}},b={6^{{{log}_2}3}}•[3+\sqrt{{{(-4)}^2}}]$,試比較a與b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x,y滿(mǎn)足$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≥0\end{array}\right.$,則目標(biāo)函數(shù)z=3x+y的最小值是( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案