8.已知集合A={x|-3<2x+1<11},B={x|m-1≤x≤2m+1}
(1)當(dāng)m=3時,求A∩∁RB;
(2)若A∪B=A,求m的取值范圍..

分析 (1)當(dāng)m=3時,求出B={x|2≤x≤7},∁RB={x|x<2或x>7},即可求A∩∁RB;
(2)若A∪B=A,則B⊆A,分類討論求m的取值范圍..

解答 解:(1)由題意可知A={x|-2<x<5},
當(dāng) m=3 時,B={x|2≤x≤7},∁RB={x|x<2或x>7},
∴A∩∁RB={x|-2<x<2};
(2)∵A∪B=A,∴B⊆A.
①若B=∅,則m-1>2m+1,即m<-2;
②若B≠∅,$\left\{\begin{array}{l}{m-1≤2m+1}\\{m-1>-2}\\{2m+1<5}\end{array}\right.$,即-1<m<2,
綜上,m 的取值范圍是m<-2或-1<m<2.

點評 本題考查集合的運算,考查集合關(guān)系的運用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.二項式${({x^2}-\frac{1}{{\sqrt{x}}})^{10}}$的展開式的二項式系數(shù)和為( 。
A.1B.-1C.210D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{{{{ln}^2}x+lnx+1}}{x}$,$g(x)=\frac{x^2}{e^x}$.
(1)分別求函數(shù)f(x)與g(x)在區(qū)間(0,e)上的極值;
(2)求證:對任意x>0,f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖莖葉圖記錄了甲乙兩組各四名同學(xué)的植樹棵數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中用x表示
(1)如果x=8,求乙組同學(xué)植樹棵樹的平均數(shù)與方差
(2)如果x=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)植樹總棵數(shù)為19的概率
(注:標(biāo)準(zhǔn)差s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}-({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{2+i}{1+i}$的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.兩圓C1:x2+y2+D1x+E1y+F1=0(圓心C1,半徑r1)與C2:x2+y2+D2x+E2y+F2=0(圓心C2,半徑r2)不是同心圓,方程相減(消去二次項)得到的直線l:(D1-D2)x+(E1-E2)y+(F1-F2)=0叫做圓C1與圓C2的根軸.
(1)求證:當(dāng)C1與C2相交于A,B兩點時,AB所在的直線為根軸l;
(2)對根軸上任意的點P,求證:|PC1|2-r12=|PC2|2-r22;
(3)設(shè)根軸l與C1C2交于點H,|C1C2|=d,求證:H分$\overrightarrow{{C_1}{C_2}}$的比λ=$\frac{{{d^2}+{r_1}^2-{r_2}^2}}{{{d^2}-{r_1}^2+{r_2}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x-1)<f(x)對任意的x>1恒成立,則k的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)用分層抽樣的方法從成績是80分以上的學(xué)生中抽取了6人進(jìn)行試卷分析,再從這6個人中選2人作學(xué)習(xí)經(jīng)驗介紹發(fā)言,求選出的2人中至少有1人在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.同時拋擲兩個骰子(各個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),則向上的數(shù)之積為偶數(shù)的概率是$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案