13.直三棱柱ABC-A1B1C1中,∠BAC=90°,M,N分別是A1B1,A1C1的中點,BA=CA=CC1,則BM與AN所成角的余弦值為( 。
A.$\frac{4}{5}$B.$\frac{1}{10}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{2}}}{2}$

分析 已知ABC-A1B1C1是直三棱柱,取BC的中點0,連接A0,NM,BM,BM∥NO,BC∥NM,那么AN和NO所成角即為BM與AN所成角.求出邊長,利用余弦定理求解角的大。

解答 解:∵M,N分別是A1B1,A1C1的中點,
取BC的中點0,連接AO,NM,BM,
∴BM∥NO,BC∥NM且BC=2NM,
那么AN和NO所成角即為BM與AN所成角.
設(shè)BA=CA=CC1=2,∠BAC=90°,ABC-A1B1C1是直三棱柱,
∴AO=$\sqrt{2}$,AN=$\sqrt{5}$,BM=NO=$\sqrt{5}$,
∴cos∠ANO=$\frac{5+5-2}{2•\sqrt{5•\sqrt{5}}}$=$\frac{4}{5}$,
故選:A.

點評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2(x+$\frac{π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(2)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若橢圓$\frac{x^2}{3}+\frac{y^2}{m}=1$與直線x+2y-2=0有兩個不同的交點,則m的取值范圍是($\frac{1}{4}$,3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD( 。ヽm.
A.5B.$\frac{16}{5}$C.$\frac{6}{5}$D.$\frac{17}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
273830373531
332938342836
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰參加比賽比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}=5$,則a+b的取值范圍是( 。
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時,$f(x)={({\frac{1}{2}})^x}-1$.若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則實數(shù)a的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$({1,\root{4}{3}})$D.$({\root{4}{3},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2clnx-x2(c∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若c=1,設(shè)函數(shù)g(x)=f(x)-mx的圖象與x軸交于A(x1,0),B(x2,0)兩點,且0<x1<x2,又y=g'(x)是y=g(x)的導(dǎo)函數(shù),若正常數(shù)a,b滿足a+b=1,b≥a,證明:g'(ax1+bx2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.我國古代數(shù)學(xué)名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1533石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷56粒,則這批米內(nèi)夾谷約為( 。
A.1365石B.338石C.168石D.134石

查看答案和解析>>

同步練習(xí)冊答案