分析 由題意可知:將直線代入橢圓方程,由$\left\{\begin{array}{l}{m≠3}\\{m>0}\\{△>0}\end{array}\right.$,即可求得m的取值范圍.
解答 解:由橢圓$\frac{x^2}{3}+\frac{y^2}{m}=1$與直線x+2y-2=0聯(lián)立,即$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{m}=1}\\{x+2y-2=0}\end{array}\right.$,
消去x,并整理得(3+4m)y2-8my+m=0.
根據(jù)條件橢圓與直線x+2y-2=0有兩個(gè)不同的交點(diǎn),
∴$\left\{\begin{array}{l}{m≠3}\\{m>0}\\{△=64{m}^{2}-4m(4m+3)>0}\end{array}\right.$,
解得:$\frac{1}{4}$<m<3,或m>3.
∴m的取值范圍($\frac{1}{4}$,3)∪(3,+∞),
故答案為:($\frac{1}{4}$,3)∪(3,+∞).
點(diǎn)評 本題考查直線與橢圓的位置關(guān)系,考查橢圓的性質(zhì),考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 1 | C. | 2 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 空間中任意三點(diǎn)確定一個(gè)平面 | |
B. | 直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個(gè)平面 | |
C. | 分別在三條不同的直線上的三點(diǎn)確定一個(gè)平面 | |
D. | 不共線的四點(diǎn)確定一個(gè)平面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或1 | B. | 0 | C. | 1或0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com