12.下列選項(xiàng)中表述正確的是( 。
A.空間中任意三點(diǎn)確定一個平面
B.直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個平面
C.分別在三條不同的直線上的三點(diǎn)確定一個平面
D.不共線的四點(diǎn)確定一個平面

分析 A,空間中不共線三點(diǎn)確定一個平面;
B,直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個平面;
C,分別在三條不同的直線上的三點(diǎn)可能共線,不能確定一個平面;
D,不共線的四點(diǎn)可以確定多個個平面.

解答 解:對于A,空間中不共線三點(diǎn)確定一個平面,故錯;
對于B,直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個平面,正確;
對于C,分別在三條不同的直線上的三點(diǎn)可能共線,不能確定一個平面,故錯;
對于D,不共線的四點(diǎn)可以確定多個個平面,故錯
故選:B

點(diǎn)評 本題考查了空間確定平面的條件,熟記公理是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某獎勵基金發(fā)放方式為:每年一次,把獎金總額平均分成6份,獎勵在某6個方面為人類作出最有益貢獻(xiàn)的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息存入基金總額,以便保證獎金數(shù)逐年增加.假設(shè)基金平均年利率為r=6.24%,2000年該獎發(fā)放后基金總額約為21000萬元.用an表示為第n(n∈N*)年該獎發(fā)放后的基金總額(2000年為第一年).
(1)用a1表示a2與a3,并根據(jù)所求結(jié)果歸納出an的表達(dá)式;
(2)試根據(jù)an的表達(dá)式判斷2011年度該獎各項(xiàng)獎金是否超過150萬元?并計(jì)算從2001年到2011年該獎金累計(jì)發(fā)放的總額.
(參考數(shù)據(jù):1.062410=1.83,1.0329=1.32,1.031210=1.36,1.03211=1.40)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2(x+$\frac{π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(2)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),則sinx-cos2x=(  )
A.$\frac{5\sqrt{2}-12}{18}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線l的方向向量與平面α的法向量的夾角為120°,則直線l與平面α的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求異面直線A1B與B1C所成角的余弦值..
(2)若點(diǎn)E、F分別是AB、A1B的中點(diǎn),求證:EF∥平面BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若橢圓$\frac{x^2}{3}+\frac{y^2}{m}=1$與直線x+2y-2=0有兩個不同的交點(diǎn),則m的取值范圍是($\frac{1}{4}$,3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD( 。ヽm.
A.5B.$\frac{16}{5}$C.$\frac{6}{5}$D.$\frac{17}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2clnx-x2(c∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若c=1,設(shè)函數(shù)g(x)=f(x)-mx的圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且0<x1<x2,又y=g'(x)是y=g(x)的導(dǎo)函數(shù),若正常數(shù)a,b滿足a+b=1,b≥a,證明:g'(ax1+bx2)<0.

查看答案和解析>>

同步練習(xí)冊答案