1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD( 。ヽm.
A.5B.$\frac{16}{5}$C.$\frac{6}{5}$D.$\frac{17}{5}$

分析 由AC是⊙O的直徑,AC⊥BC,可得BC是⊙O的切線.利用切割線定理可得:BC2=BD•BA即可得出.

解答 解:AB=$\sqrt{9+16}$=5,
∵AC是⊙O的直徑,AC⊥BC,∴BC是⊙O的切線.
∴BC2=BD•BA,
∴42=BD•5
∴BD=$\frac{16}{5}$.
故選:B.

點(diǎn)評 本題考查了圓的切線的判定、勾股定理、切割線定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={1,2},N={a2},則“a=1”是“N是M的子集”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列選項(xiàng)中表述正確的是( 。
A.空間中任意三點(diǎn)確定一個(gè)平面
B.直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個(gè)平面
C.分別在三條不同的直線上的三點(diǎn)確定一個(gè)平面
D.不共線的四點(diǎn)確定一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在四棱錐E-ABCD中,底面ABCD是邊長為2的正方形,△BCE為等邊三角形,平面ABCD⊥平面BCE,F(xiàn)為CD上的動(dòng)點(diǎn),當(dāng)AF+EF最小時(shí),四棱錐E-ABCD與三棱錐F-ABE的外接球的半徑之比為2$\sqrt{7}$:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=ex•cosx,x∈[0,2π],若f′(x)=0,則x=$\frac{π}{4}$,$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示:
x4567
y8.27.86.65.4
若x,y之間的線性回歸方程為$\widehaty$=$\widehatb$x+12.28,則$\widehatb$的值為(  )
A.-0.92B.-0.94C.-0.96D.-0.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直三棱柱ABC-A1B1C1中,∠BAC=90°,M,N分別是A1B1,A1C1的中點(diǎn),BA=CA=CC1,則BM與AN所成角的余弦值為( 。
A.$\frac{4}{5}$B.$\frac{1}{10}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)a>0,b>0,且滿足2a+3b=6,則$\frac{2}{a}$+$\frac{3}$的最小值是( 。
A.$\frac{8}{3}$B.$\frac{11}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|+|x+1|.
(Ⅰ)解不等式f(x)>4;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案