15.已知函數(shù)f(x)是定義域R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,若實(shí)數(shù)a滿足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2},2$]D.(0,2]

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵函數(shù)f(x)是定義域R在上的偶函數(shù),
∴由f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),得f(log2a)+f(-log2a)≤2f(1),
即f(log2a)+f(log2a)=2f(log2a)≤2f(1),
則f(log2a)≤f(1),
∵在區(qū)間[0,+∞)單調(diào)遞增,
∴不等式等價(jià)為f(|log2a|)≤f(1),
即|log2a|≤1,則-1≤log2a≤1,
得$\frac{1}{2}$≤a≤2,
故選:C

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足關(guān)系式f(x)=x2+2xf′(2)-lnx,則f(1)的值為(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的x∈[-1,0]都有f(x)≥0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.觀察圓周上n個(gè)點(diǎn)之間所連的弦,發(fā)現(xiàn)兩個(gè)點(diǎn)可以連一條弦,3個(gè)點(diǎn)可以連3條弦,4個(gè)點(diǎn)可以連6條弦,5個(gè)點(diǎn)可以連10條弦,6個(gè)點(diǎn)可以連15條弦,請(qǐng)你探究其中規(guī)律,如果圓周上有10個(gè)點(diǎn).則可以連45條弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0時(shí),解不等式f(x)≥8;
(2)若對(duì)任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為了研究某種細(xì)菌在特定條件下隨時(shí)間變化的繁殖情況,得到如表所示實(shí)驗(yàn)數(shù)據(jù),若t與y線性相關(guān).
天數(shù)t(天)  4 5
繁殖個(gè)數(shù)y(千個(gè))  6 8 912 
(1)求y關(guān)于t的回歸直線方程;
(2)預(yù)測(cè)t=8時(shí)細(xì)菌繁殖的個(gè)數(shù).
(參考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$,$\widehat{y}=\widehatx+\widehat{a}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足x2<y2,則下列不等式成立的是( 。
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+ρ2sin2θ=12,且曲線C的下焦點(diǎn)F在直線l上.
(1)若直線l與曲線C交于A,B兩點(diǎn),求|FA|•|FB|的值;
(2)求曲線C的內(nèi)接矩形的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)點(diǎn)A(0,1),B(2,-1),點(diǎn)C在雙曲線M:$\frac{{x}^{2}}{4}$-y2=1上,則使△ABC的面積為3的點(diǎn)C的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案