3.設(shè)函數(shù)f(x)=1nx+$\frac{a}{x-1}$(a>0).
(I)當(dāng)a=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,$\frac{1}{e}$)內(nèi)有極值點,當(dāng)x1∈(0,1),x2∈(1,+∞)時,求證:f(x2)-f(x1)值不小于4(其中e為自然對數(shù)的底數(shù),e=2.71828…).

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(2)得到f(x1)≤f(α)=lnα+$\frac{a}{α-1}$,f(x2)≥f(β)=lnβ+$\frac{a}{β-1}$,
問題轉(zhuǎn)化為f(x2)-f(x1)≥f(β)-f(α),根據(jù)αβ=1,α+β=a+2,求出f(β)-f(α )的解析式,記h(β)=2lnβ+β-$\frac{1}{β}$(β>e),根據(jù)函數(shù)的單調(diào)性證明即可.

解答 (1)解:當(dāng)a=$\frac{1}{2}$時,f(x)=lnx+$\frac{1}{2(x-1)}$(x>0且x≠1),
∴f′(x)=$\frac{1}{x}$-$\frac{1}{2}$•$\frac{1}{(x-1)^{2}}$=$\frac{2{x}^{2}-5x+2}{2x(x-1)^{2}}$,
令f′(x)=0,解得:x=$\frac{1}{2}$或2,
列表如下:

 x (0,$\frac{1}{2}$)  $\frac{1}{2}$ ($\frac{1}{2}$,1)(1,2)  2 ( 2,+∞)
 f′(x)+ 0-- 0+
f(x)  
由表格可知函數(shù)f(x)的單調(diào)區(qū)間遞增區(qū)間為:(0,$\frac{1}{2}$),(2,+∞),
單調(diào)遞減區(qū)間為:($\frac{1}{2}$,1),(1,2);
(2)證明:由f′(x)>0,可得0<x<α或x>β;由f′(x)<0,可得α<x<1或1<x<β
∴f(x)在(0,α)內(nèi)遞增,在(α,1)內(nèi)遞減,在(1,β)內(nèi)遞減,在(β,+∞)遞增
由x1∈(0,1),可得f(x1)≤f(α)=lnα+$\frac{a}{α-1}$,
由x2∈(1,+∞),可得f(x2)≥f(β)=lnβ+$\frac{a}{β-1}$,
∴f(x2)-f(x1)≥f(β)-f(α)
∵αβ=1,α+β=a+2,
∴f(β)-f(α )=2lnβ+a×$\frac{α-β}{(α-1)(β-1)}$
=2lnβ+a×$\frac{\frac{1}{β}-β}{2-(a+2)}$=2lnβ+β-$\frac{1}{β}$,
記h(β)=2lnβ+β-$\frac{1}{β}$(β>e),
則h′(β)=$\frac{2}{β}$+1+$\frac{1}{{β}^{2}}$>0,h(β)在(0,+∞)上單調(diào)遞增,
∴h(β)>h(e)=e+2-$\frac{1}{e}$,
∴f(x2)-f(x1)>e+2-$\frac{1}{e}$≥4.
則f(x2)-f(x1)值不小于4.

點評 本題以函數(shù)為載體,考查導(dǎo)數(shù)知識的運用,考查函數(shù)的極值與單調(diào)性,考查不等式的證明,綜合性比較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的極坐標(biāo)方程為ρ=$\frac{\sqrt{3}}{sin(θ+\frac{π}{3})}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$,(φ為參數(shù))
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲線C’,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè) tanα=3,則 $\frac{sin(α-π)-sin(\frac{π}{2}+α)}{cos(π-α)+cos(\frac{π}{2}-α)}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)隨機變量ξ服從正態(tài)分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),則實數(shù)a的值為( 。
A.$\frac{7}{3}$B.$\frac{3}{5}$C.$\frac{5}{3}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圓C內(nèi)切于扇形AOB,若隨機在扇形AOB內(nèi)投一點,則該點落在圓C外的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinx=$\frac{\sqrt{2}}{2}$,當(dāng)x∈[0,2π]時,求角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中優(yōu)秀的人數(shù)所占的比例為$\frac{2}{7}$.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”
參考數(shù)據(jù):$\stackrel{∧}{y}$=1.28×10+0.08=12.38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有一對夫妻有兩個孩子,已知其中一個是男孩,則另一個是女孩的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m∈R,過定點A的動直線mx+y-1=0與過定點B的動直線x-my+m+2=0交于點P(x,y),則|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范圍為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案