2.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個(gè)周期上的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,求sinα的值.

分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,從而求得函數(shù)的解析式.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
(3)由條件求得cosα的值,再利用同角三角函數(shù)的基本關(guān)系求得sinα的值.

解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個(gè)周期上的圖象,
可得A=$\sqrt{3}$,$\frac{2π}{ω}$=$\frac{5π}{6}$+$\frac{π}{6}$,∴ω=2,
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=0,∴ω=-$\frac{2π}{3}$,∴$f(x)=\sqrt{3}sin(2x-\frac{2π}{3})$.
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{2π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{7π}{12}$≤x≤kπ+$\frac{13π}{12}$,可得函數(shù)的減區(qū)間為$[{\frac{7π}{12}+kπ,\frac{13π}{12}+kπ}]k∈Z$.
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,則$\sqrt{3}$sin(α+$\frac{7π}{6}$-$\frac{2π}{3}$)=$\sqrt{3}$sin(α+$\frac{π}{2}$)=$\sqrt{3}$cosα=$\frac{3\sqrt{3}}{5}$,
∴cosα=$\frac{3}{5}$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.還考查了正弦函數(shù)的單調(diào)性,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.D,C,B三點(diǎn)依次在底面同一直線上,DC=a,點(diǎn)A在底面上的射影為B.從C,D兩點(diǎn)測得點(diǎn)A的仰角分別為β和α(α<β),則A點(diǎn)離底面的高度AB等于( 。
A.$\frac{asinαsinβ}{sin(β-α)}$B.$\frac{asinαcosβ}{sin(β-α)}$C.$\frac{acosαsinβ}{sin(β-α)}$D.$\frac{asinαsinβ}{cos(β-α)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=ex[x2-(1+a)x+1]
(1)若曲線y=f(x)在點(diǎn)P(0,f(0))處的切線與直線y=x+4平行,求a的值
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,PA⊥平面ABCD,底面ABCD為菱形,$∠ABC=\frac{π}{3}$,PA=AB=4,AC交BD于O,點(diǎn)N是PC的中點(diǎn).
(1)求證:BD⊥平面PAC;
(2)求平面ANC與平面ANB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在函數(shù) ①y=cos|2x|,②y=|cosx|,③$y=|sin(2x+\frac{π}{2})|$,④y=tan|x|中,最小正周期為π的所有偶 函數(shù)為( 。
A.①②B.①②③C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,則( 。
A.b<a<cB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知某帆船中心比賽場館區(qū)的海面上每天海浪高度y(米)可看作是時(shí)間t(0≤t≤24,單位:小時(shí))的函數(shù),記作y=f(t),經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b,下表是某日各時(shí)的浪高數(shù)據(jù):
t/時(shí)03691215182124
y/米2$\frac{3}{2}$1$\frac{3}{2}$2$\frac{3}{2}$0.99$\frac{3}{2}$2
則最能近似地表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是( 。
A.y=$\frac{1}{2}$cos$\frac{π}{6}$t+1B.y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$C.y=2cos$\frac{π}{6}$t+$\frac{3}{2}$D.y=$\frac{1}{2}$cos6πt+$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=e2x+ax在(0,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期為π,且圖象上一個(gè)最低點(diǎn)為$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)當(dāng)$x∈[0,\frac{π}{12}]$時(shí),求f(x)的最值.

查看答案和解析>>

同步練習(xí)冊答案