11.設(shè)函數(shù)f(x)=e2x+ax在(0,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)

分析 求導(dǎo),由題意可知f′(x)≥0恒成立,由指數(shù)函數(shù)的性質(zhì),即可求得實(shí)數(shù)a的取值范圍.

解答 解:由函數(shù)f(x)=e2x+ax在(0,+∞)上單調(diào)遞增,則f′(x)≥0恒成立,
∴f′(x)=2e2x+a,即a≥-2e2x,x∈(0,+∞),
由e2x>0,則-2e2x<-2,
則a≥-2,
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查導(dǎo)數(shù)與函數(shù)單調(diào)性的應(yīng)用,指數(shù)函數(shù)的性質(zhì),考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條商業(yè)街道,要求街道PQ與AB垂直,街道PR與AC垂直,線段RQ表示第三條街道.
(1)如果P位于弧BC的中點(diǎn),求三條街道的總長(zhǎng)度;
(2)由于環(huán)境的原因,三條街道PQ、PR、RQ每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬(wàn)元、200萬(wàn)元及400萬(wàn)元,問(wèn):這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬(wàn)元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個(gè)周期上的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等差數(shù)列{an}滿足a1+a2+a3=9,a2+a8=18,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足Sn=2bn-2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足${c_n}=\frac{a_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sinx-ax.
(Ⅰ)對(duì)于x∈(0,1),f'(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),令h(x)=f(x)-sinx+lnx+1,求h(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}({x∈R,a∈R})$.
(1)求證:f(x)在(-∞,+∞)上是增函數(shù);
(2)設(shè)函數(shù)f(x)存在反函數(shù)f-1(x),且f(x)是奇函數(shù),若方程f-1(x)=log2(x+t)有實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在正四面體A-BCD中,所有棱長(zhǎng)為1,E,F(xiàn)分別是AC,AD上的動(dòng)點(diǎn),求截面△BEF周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.(x-$\frac{1}{x}$)6的展開(kāi)式中,系數(shù)最大的項(xiàng)為第第三、第五項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案