A. | 5 | B. | 4 | C. | 3 | D. | 2 |
分析 本題主要考查線性規(guī)劃的基本知識,先畫出約束條件 $\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$的可行域,再求出可行域中各角點的坐標(biāo),將各點坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)2x+3y的最小值.
解答 解:由約束條件得如圖所示的陰影區(qū)域,
令2x+3y=z,即y=-$\frac{2}{3}$x+z,
顯然當(dāng)平行直線過點N(1,1)時,
z取得最小值為5;
故選A.
點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗證,求出最優(yōu)解.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
t/時 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 2 | $\frac{3}{2}$ | 1 | $\frac{3}{2}$ | 2 | $\frac{3}{2}$ | 0.99 | $\frac{3}{2}$ | 2 |
A. | y=$\frac{1}{2}$cos$\frac{π}{6}$t+1 | B. | y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$ | C. | y=2cos$\frac{π}{6}$t+$\frac{3}{2}$ | D. | y=$\frac{1}{2}$cos6πt+$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-1,+∞) | C. | [-2,+∞) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | x1 | x2 | x3 | x4 | 5 |
y | 2.5 | 4.6 | 5.4 | n | 7.5 |
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | (-∞,-1] | C. | [1,2] | D. | [1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com