分析 (1)設(shè)橢圓的標(biāo)準(zhǔn)方程,由c,及離心率即可求得a值,則b2=a2-c2=1,即可求得橢圓方程;
(2)將直線方程代入橢圓方程,由韋達(dá)定理及中點(diǎn)坐標(biāo)公式可知$\left\{\begin{array}{l}{△>0}\\{\frac{{x}_{1}+{x}_{2}}{2}=-\frac{1}{2}}\end{array}\right.$,即可求得直線l斜率的取值范圍.
解答 解:(1)設(shè)橢圓方程為$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),由已知c=2$\sqrt{2}$,e=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,
解得:a=3,則b2=a2-c2=1,
故所求方程為$\frac{{y}^{2}}{9}+{x}^{2}=1$;(6分)
(2)設(shè)直線l的方程為y=kx+t(k≠0),A(x1,y1),B(x2,y2),
代入橢圓方程$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{y}^{2}}{9}+{x}^{2}=1}\end{array}\right.$,整理得(k2+9)x2+2ktx+t2-9=0,
由韋達(dá)定理可知:x1+x2=-$\frac{2kt}{{k}^{2}+9}$,
由題意得$\left\{\begin{array}{l}{△>0}\\{\frac{{x}_{1}+{x}_{2}}{2}=-\frac{1}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{4{k}^{2}{t}^{2}-4({k}^{2}+9)({t}^{2}-9)>0}\\{-\frac{2kt}{{k}^{2}+9}=-1}\end{array}\right.$,
解得:k>$\sqrt{3}$或k<-$\sqrt{3}$.
直線l斜率的取值范圍(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞).(12分
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理,中點(diǎn)坐標(biāo)公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com