分析 (I)由余弦定理計(jì)算AB,利用勾股定理的逆定理得出AB⊥BC,由BB1⊥平面ABC得BB1⊥AB,故AB⊥平面B1BCC1,從而平面ABE⊥平面B1BCC1;
(II)過B作BD⊥AC于D,則BD⊥平面ACC1A1,于是V${\;}_{E-AB{C}_{1}}$=V${\;}_{B-AE{C}_{1}}$=$\frac{1}{3}{S}_{△AE{C}_{1}}•BD$.
解答 (I)證明:∵AC=2,BC=1,∠ACB=60°
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}-2AC•BC•cos60°}$=$\sqrt{3}$.
∴AB2+BC2=AC2,∴AB⊥BC.
∵AA1⊥平面ABC,AA1∥BB1,
∴BB1⊥平面ABC,∵AB?平面ABC,
∴BB1⊥AB,
又BC?平面B1BCC1,BB1?平面B1BCC1,BC∩BB1=B,
∴AB⊥平面B1BCC1.又AB?平面ABE,
∴平面ABE⊥平面B1BCC1.
(II)解:過B作BD⊥AC于D,
∵AA1⊥平面ABC,BD?平面ABC,
∴AA1⊥BD,又AA1?平面ACC1A1,AC?平面ACC1A1,AA1∩AC=A,
∴BD⊥平面ACC1A1.
∵S△ABC=$\frac{1}{2}AC•BD=\frac{1}{2}AB•BC$,∴BD=$\frac{AB•BC}{AC}$=$\frac{\sqrt{3}}{2}$.
∵S${\;}_{△AE{C}_{1}}$=$\frac{1}{2}×E{C}_{1}×A{A}_{1}$=$\frac{1}{2}×1×2=1$,
∴V${\;}_{E-AB{C}_{1}}$=V${\;}_{B-AE{C}_{1}}$=$\frac{1}{3}{S}_{△AE{C}_{1}}•BD$=$\frac{1}{3}×1×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{6}$.
點(diǎn)評(píng) 本題考查了線面垂直,面面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 既不充分也不必要條件 | D. | 充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2015 | B. | 2016 | C. | 4030 | D. | 4032 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | 41 | C. | 21 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com