17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|對于任意b∈R都成立.
(1)求a的值;
(2)設(shè)x>y>0,求證:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

分析 (1)由|b+2|-|2-b|≤|b+2+2-b|=4,當且僅當b≥2時等號成立,4=|b+2+2-b|≤|b+2|+|2-b|,當且僅當-2≤b≤2時等號成立,即可求a的值;
(2)作差,利用基本不等式,即可證明結(jié)論.

解答 (1)解:|b+2|-|2-b|≤|b+2+2-b|=4,當且僅當b≥2時等號成立,4=|b+2+2-b|≤|b+2|+|2-b|,
當且僅當-2≤b≤2時等號成立,
∵對任意實數(shù)b,不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|都成立.
∴a=4.
(2)證明:$2x+\frac{1}{{{x^2}-2xy+{y^2}}}-2y=(x-y)+(x-y)+\frac{1}{{{{(x-y)}^2}}}$,
∵x>y>0,∴$(x-y)+\;(x-y)\;+\frac{1}{{{{(x-y)}^2}}}≥3\root{3}{{(x-y)\;•\;(x-y)\;•\;\frac{1}{{{{(x-y)}^2}}}}}=3$,當且僅當x=y+1時等號成立,
∴$2x+\frac{1}{{{x^2}-2xy+{y^2}}}-2y≥3$,
即$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

點評 本題考查絕對值不等式的性質(zhì),考查基本不等式的運用,正確變形是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$則z=3x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是AB,BB1,B1C1的中點,則過這三點的截面圖的形狀是( 。
A.三角形B.四邊形C.五邊形D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥平面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC的中點,過MN作平面MNPQ分別與線段CD,AB相交于點P,Q,且$\overrightarrow{AQ}=λ\overrightarrow{AB}$.
(1)當$λ=\frac{1}{2}$時,證明:平面MNPQ∥平面SAD;
(2)是否存在實數(shù)λ,使得二面角M-PQ-B為60°?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某同學(xué)用“五點法”畫函數(shù)$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,先列表,并填寫了一些數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$
$\frac{7π}{2}$
$\frac{13π}{2}$
f(x)020-20
(1)請將表格填寫完整,并畫出函數(shù)f(x)在一個周期內(nèi)的簡圖;

(2)寫出如何由f(x)=sinx的圖象變化得到$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,要求用箭頭的形式寫出變化的三個步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知角α的終邊在直線$y=-\sqrt{3}x$上,
(1)求tanα,并寫出與α終邊相同的角的集合S;
(2)求值$\frac{{\sqrt{3}sin({α-π})+5cos({2π-α})}}{{-\sqrt{3}cos({\frac{3π}{2}+α})+cos({π+α})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f'(x)=2x+2.
(1)求y=f(x)的表達式;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩條坐標軸所圍成的圖形分成面積相等的兩部分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.曲線y=ex+1在點A(0,2)處的切線斜率為( 。
A.1B.2C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點P為曲線(x-1)2+(y-2)2=9(y≥2)上任意一點,則$x+\sqrt{3}y$的最小值為( 。
A.$2\sqrt{3}-5$B.$2\sqrt{3}-2$C.$5\sqrt{3}+1$D.$2\sqrt{3}+1$

查看答案和解析>>

同步練習冊答案