4.袋子中裝有大小完全相同的6個(gè)紅球和4個(gè)黑球,從中任取2個(gè)球,則所取出的兩個(gè)球中恰有1個(gè)紅球的概率為( 。
A.$\frac{4}{15}$B.$\frac{12}{25}$C.$\frac{8}{15}$D.$\frac{3}{5}$

分析 先求出基本事件總數(shù)n=${C}_{10}^{2}$=45,再取出的兩個(gè)球中恰有1個(gè)紅球包含的基本事件個(gè)數(shù)m=${C}_{6}^{1}{C}_{4}^{1}$=24,由此能求出所取出的兩個(gè)球中恰有1個(gè)紅球的概率.

解答 解:袋子中裝有大小完全相同的6個(gè)紅球和4個(gè)黑球,從中任取2個(gè)球,
基本事件總數(shù)n=${C}_{10}^{2}$=45,
取出的兩個(gè)球中恰有1個(gè)紅球包含的基本事件個(gè)數(shù)m=${C}_{6}^{1}{C}_{4}^{1}$=24,
∴所取出的兩個(gè)球中恰有1個(gè)紅球的概率為p=$\frac{m}{n}$=$\frac{24}{45}$=$\frac{8}{15}$.
故選:C.

點(diǎn)評(píng) 本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個(gè)式中的值都等于同一個(gè)常數(shù)k.
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin274°-cos44°sin74°.
(1)試從上述四個(gè)式中選擇一個(gè),求出這個(gè)常數(shù)k的值;
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣三角恒定等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足y=x2-2x+2,-1≤x≤1,則$\frac{y+3}{x+2}$的最小值是( 。
A.$\frac{4}{3}$B.$2\sqrt{13}-6$C.8D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了完成對(duì)某城市的工薪階層是否贊成調(diào)整個(gè)人所得稅稅率的調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入頻率分布直方圖(如圖),同時(shí)得到了他們?cè)率杖肭闆r與贊成人數(shù)統(tǒng)計(jì)表(如表):
月收入(百元)贊成人數(shù)
[15,25)8
[25,35)7
[35,45)10
[45,55)6
[55,65)2
[65,75)2
(1)試根據(jù)頻率分布直方圖估計(jì)這60人的平均月收入;
(2)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k項(xiàng)相加,則前k項(xiàng)和不小于$\frac{63}{64}$的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若f(1+$\sqrt{x}$)=x,則函數(shù)f(x)的解析式為f(x)=f(x)=(x-1)2,x≥1 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.把函數(shù)$y=sin(4x+\frac{π}{6})$圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{3}$個(gè)單位,那么所得圖象的一條對(duì)稱軸方程為(  )
A.$x=-\frac{π}{2}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{4}$D.$x=\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$sin(\frac{π}{3}-α)=\frac{1}{3}$,則$cos(α+\frac{π}{6})$=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知平面內(nèi)一定點(diǎn)A(5,0)、一定直線x=5,一動(dòng)點(diǎn)M到定點(diǎn)A的距離等干它到定直線距離.求點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案