2.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)的值.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sinβ的值,進(jìn)而利用兩角和的正弦函數(shù)公式即可計算得解sin(α+β)的值.

解答 解:∵sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,sinβ=-$\sqrt{1-co{s}^{2}β}$=-$\frac{4}{5}$,
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{2}{3}×(-\frac{3}{5})$+(-$\frac{\sqrt{5}}{3}$)×(-$\frac{4}{5}$)=$\frac{4\sqrt{5}-6}{15}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想和計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y∈R且2x+2y=1,則x+y的取值范圍為(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若$f(θ)=sinθ-\sqrt{3}cosθ=2sin({θ+φ})({-π<φ<π})$,則φ=$-\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2|x+1|+ax.
(1)證明:當(dāng)a>2時,f(x)在R上是增函數(shù);
(2)若函數(shù)f(x)存在兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}:2,-6,12,-20,30,-42,….寫出該數(shù)列的一個通項公式:an=(-1)n+1×n•(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的導(dǎo)數(shù)
(1)y=x2+log3x;    
(2)y=x3•ex;
(3)y=$\frac{cosx}{x}$
(4)y=sin2(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集為$\{x|-\frac{4a}{5}≤x≤\frac{3b}{5}\}$,a,b∈R.
(1)求a,b的值;
(2)對任意實數(shù)x,都有|x-a|+|x+b|≥m2-3m+5成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{{e}^{x}}$,對任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)>g(x2)成立,則實數(shù)a的取值范圍是(e-2-$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為$\frac{1}{2}$,且點P在圖中陰影部分(包括邊界)運動.若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$,其中x,y∈R,則4x-y的取值范圍是( 。
A.$[2,\;\;3+\frac{{3\sqrt{2}}}{4}]$B.$[2,\;\;3+\frac{{\sqrt{5}}}{2}]$
C.$[3-\;\;\frac{{\sqrt{2}}}{4},\;\;3+\frac{{\sqrt{5}}}{2}]$D.$[3-\;\;\frac{{\sqrt{17}}}{2},\;\;3+\;\frac{{\sqrt{17}}}{2}]$

查看答案和解析>>

同步練習(xí)冊答案