15.某地十余萬考生的成績中,隨機地抽取了一批考生的成績,將其分為6組:第一組[40,50),第二組[50,60),…,第六組[90,100],作出頻率分布直方圖,如圖所示
(I)用每組區(qū)間的中點值代表該組的數(shù)據(jù),估算這批考生的平均成績;
(II)現(xiàn)從及格的學(xué)生中,用分層抽樣的方法抽取了70名學(xué)生(其中女生有34名),已知成績“優(yōu)異”(超過90分)的女生有1名,能否有95%的把握認為數(shù)學(xué)成績優(yōu)異與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.010.050.0250.010
k02.7063.8415.0246.635

分析 (Ⅰ)根據(jù)題意,計算平均數(shù)即可;
(Ⅱ)根據(jù)分層抽樣原理計算從這四組中分別抽取的人數(shù),
填寫列聯(lián)表,計算觀測值,對照臨界值表得出結(jié)論.

解答 解:(Ⅰ)根據(jù)題意,計算平均數(shù)為
$\overline{x}$=(45×0.01+55×0.02+65×0.03+75×0.025+85×0.01+95×0.005)×10=67;…(5分)
(Ⅱ)[60,70),[70,80),[80,90),[90,100]四組學(xué)生的頻率之比為
0.3:0.25:0.1:0.05=6:5:2:1,
按分層抽樣應(yīng)該從這四組中分別抽取30,25,10,5人,
依題意,可得到以下列聯(lián)表:

男生女生合計
優(yōu)異415
一般(及格)323365
合計363470
${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}=\frac{{70{{({4×33-32×1})}^2}}}{36×34×5×65}≈1.76<3.841$,
對照臨界值表知,不能有95%的把握認為數(shù)學(xué)成績優(yōu)異與性別有關(guān).…(12分)

點評 本題考查了平均數(shù)與分層抽樣原理的應(yīng)用問題,也考查了獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a,b,c分別是角A,B,C的對邊,其外接圓半徑為1,(c-2a)cosB+bcosC=0.
(1)求角B的大;
(2)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,點A(c,b),右焦點F(c,0),橢圓上存在一點M,使得$\overrightarrow{OM}•\overrightarrow{OA}=\overrightarrow{OF}•\overrightarrow{OA}$,且$\overrightarrow{OM}+\overrightarrow{OF}=t\overrightarrow{OA}({t∈R})$,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,O為其內(nèi)部一點,且滿足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,則△AOB和△AOC的面積比是( 。
A.3:4B.3:2C.1:1D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ y+1≥0\\ x+y+1≤0\end{array}\right.$,則2x-y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,矩形ABCD中,AB=2AD=2,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,對于下列說法:
①|(zhì)CA|≥|CA1|
②經(jīng)過點A、E、A1、D的球的體積為2π
③一定存在某個位置,使DE⊥A1C
④|BM|是定值
其中正確的說法是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,在△ABC中,D為BC的中點,BP丄DA,垂足為P,且BP=2,則$\overrightarrow{BC}$•$\overrightarrow{BP}$=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點A(a,b)與點B(0,3)在直線3x-4y+5=0的同側(cè),給出下列四個命題:
①若a>1,則b>2;
②$\sqrt{{a}^{2}+^{2}}$>1;
③函數(shù)f(x)=sinx-3a+4b-4有無數(shù)個零點;
④當(dāng)b<0時,$\frac{b-1}{a}$的取值范圍是(0,$\frac{3}{4}$).
其中所有正確命題的序號是①②④.

查看答案和解析>>

同步練習(xí)冊答案