【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價格購買手機.某機構(gòu)為了解市民使用手機的價格情況,隨機選取了100人進(jìn)行調(diào)查,并將這100人使用的手機價格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:
(1)求圖中的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣從手機價格在和的人中抽取5人,并從這5人中抽取2人進(jìn)行訪談,求抽取出的2人的手機價格在不同區(qū)間的概率.
【答案】(1);(2)平均數(shù)3720,中位數(shù)3750;(3).
【解析】
(1)利用矩形面積之和為,構(gòu)造方程解出;(2)根據(jù)頻率分布直方圖估計平均數(shù)和中位數(shù)的方法,直接計算即可;(3)首先確定來自和的人數(shù),然后采用列舉法求解出結(jié)果.
(1)由題意知:
解得
(2)平均數(shù)
(元)
前三組的頻率之和為
前四組的頻率之和為
故中位數(shù)落在第四組.
設(shè)中位數(shù)為,則,解得
(3)由圖知手機價格在和的人數(shù)之比為,故用分層抽樣抽取的人中,來自區(qū)間的有人,設(shè)為,來自的有人,設(shè)為
則從這人中抽取出人的取法有,,,,,,,,,,共種
其中抽取出的人的手機價格在不同區(qū)間的有,,,,,,共種
故抽取出的人的手機價格在不同區(qū)間的概率
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點F1、F2分別為橢圓E:的左、右焦點,A,B分別是橢圓E的左、右頂點,D(1,0)為線段OF2的中點,且.
(1)求橢圓E的方程;
(2)若M為橢圓上的動點(異于A、B),連接MF1并延長交橢圓E于點N,連接MD、ND并分別延長交橢圓E于點P、Q,連接PQ設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問題是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b表示兩條直線,,,表示三個不重合的平面,給出下列命題:
①若,且,則;
②若a,b相交且都在,外,,,,,則;
③若,,則;
④若,,且,則;
⑤若,,,則.
其中正確命題的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,其中a>0.曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的極值和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將具有如下性質(zhì)的3×3方格表稱為“T-網(wǎng)格”:
(1)五個格填1,四個格填0;
(2)三行、三列以及兩條對角線共八條線上至多有一條,其中三個數(shù)兩兩相等。
則不同的T-網(wǎng)格共有________個。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運動的興趣,隨機從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣.
(1)完成下面的列聯(lián)表,并回答能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學(xué)生中,采用隨機抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072/p> | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com