2.7063.8415.0246.635參考公式:">

【題目】 2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣.

(1)完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為對(duì)冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計(jì)

55

合計(jì)

(2)若將頻率視為概率,現(xiàn)再從該校一年級(jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072/p>

2.706

3.841

5.024

6.635

參考公式:

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表

有興趣

沒有興趣

合計(jì)

45

10

55

30

15

45

合計(jì)

75

25

100

根據(jù)列聯(lián)表中的數(shù)據(jù),得到

,

所以能在犯錯(cuò)誤的概率不超過0.1的前提下可以認(rèn)為對(duì)冰球是否有興趣與性別有關(guān)”.

2)由列聯(lián)表中數(shù)據(jù)可知,對(duì)冰球有興趣的學(xué)生頻率是,將頻率視為概率,即從大一學(xué)生中抽取一名學(xué)生對(duì)冰球有興趣的概率是,

由題意知,從而X的分布列為

X

0

1

2

3

4

5

, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價(jià)格購買手機(jī).某機(jī)構(gòu)為了解市民使用手機(jī)的價(jià)格情況,隨機(jī)選取了100人進(jìn)行調(diào)查,并將這100人使用的手機(jī)價(jià)格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:

(1)求圖中的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);

(3)利用分層抽樣從手機(jī)價(jià)格在的人中抽取5人,并從這5人中抽取2人進(jìn)行訪談,求抽取出的2人的手機(jī)價(jià)格在不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的極大值點(diǎn),求的值;

2)若上只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐P-ABC底面各棱長均為1、高為,其內(nèi)切球的球心為0,半徑為r.求底面ABC內(nèi)與點(diǎn)O距離不大于2r的點(diǎn)所形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為,過其右焦點(diǎn)F的直線交橢圓CMN兩點(diǎn),交y軸于E點(diǎn).若,

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計(jì)戶外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶外暴露時(shí)間(單位:小時(shí))

不少于28小時(shí)

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計(jì)戶外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計(jì)戶外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時(shí)間與近視有關(guān)系?

近視

不近視

足夠的戶外暴露時(shí)間

不足夠的戶外暴露時(shí)間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是( )

A. 設(shè)是實(shí)數(shù),則“”是“ ”的充分而不必要條件

B. :“,”則有:不存在,

C. 命題“若,則”的否命題為:“若,則

D. ,”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列n項(xiàng)和為,且滿足,.

1)求數(shù)列的通項(xiàng)公式:

2)若,求正整數(shù)m的值;

3)是否存在正整數(shù)m,使得恰好為數(shù)列中的一項(xiàng)?若存在,求出所有滿足條件的m值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案