19.凸十邊形的對(duì)角線的條數(shù)為(  )
A.10B.35C.45D.90

分析 需要分三步,第一步,先選一個(gè),第二步再再?gòu)暮退幌噜彽?個(gè)中再選一個(gè),第三步,除掉重復(fù)的,根據(jù)分步乘法原理可得.

解答 解:根據(jù)題意,凸十邊形有10個(gè)頂點(diǎn),先選一個(gè),再?gòu)暮退幌噜彽?個(gè)中再選一個(gè),即可構(gòu)成一條對(duì)角線,
考慮重復(fù)問(wèn)題,則凸十邊形的對(duì)角線的條數(shù)為$\frac{10×7}{2}$=35條;
故選:B.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,注意其中對(duì)角線的重復(fù)問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.我國(guó)古代“伏羲八封圖”的部分與二進(jìn)制和十進(jìn)制的互化關(guān)系如下表,依據(jù)表中規(guī)律,A、B處應(yīng)分別填寫110,6.
八卦
二進(jìn)制000001010011A
十進(jìn)制0123B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=x+$\frac{4}{x}$的取值范圍為y≤-4或y≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=x3+x2-5x的單調(diào)遞增區(qū)間為(  )
A.$({-∞,-\frac{5}{3}})$和(1,+∞)B.$({-∞,-\frac{5}{3}})∪$(1,+∞)C.(-∞,-1)和$({\frac{5}{3},+∞})$D.(-∞,-1)∪$({\frac{5}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=3,an+1an+an+1-an+1=0,n∈N*,則a2016=( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.用數(shù)學(xué)歸納法證明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$<n(n∈N*,n>1),第一步應(yīng)驗(yàn)證不等式( 。
A.1+$\frac{1}{2}$<2B.1+$\frac{1}{2}$+$\frac{1}{3}$<3C.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$<3D.1+$\frac{1}{2}$+$\frac{1}{3}$<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.己知圖1中,四邊形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分別為線段AB,CD的中點(diǎn),OQ與EF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得OQ=$\sqrt{3}$,連結(jié)AD,BC,得一幾何體如圖2示.

(I)證明:平面ABCD⊥平面ABFE;
(II)若圖1中.∠A=45°,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,AD∥BC,AD⊥DC,AD=DC=3,BC=2,$PD=\sqrt{2}PA=\sqrt{6}$,點(diǎn)F在棱PG上,且FC=2FP,點(diǎn)E在棱AD上,且PA∥平面BEF.
(1)求證:PE⊥平面ABCD;
(2)求二面角P-EB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
x(年)  3       4     5   6
y(萬(wàn)元)    2.5    3    4  4.5 
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a
(2)已知工廠技改前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技改后使用10年的維修費(fèi)用比技改前降低多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案