18.(Ⅰ)某科考試中,從甲、乙兩個班級各抽取10名同學的成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.設甲、乙兩個班所抽取的10名同學成績方差分別為$S_甲^2$、$S_乙^2$,比較$S_甲^2$、$S_乙^2$的大小(直接寫結果,不必寫過程);
(Ⅱ)設集合$A=\{y|y={x^2}-2x+\frac{1}{2}\}$,B={x|m+x2≤1,m<1},命題p:x∈A;命題q:x∈B,若p是q的必要條件,求實數(shù)m的取值范圍.

分析 (Ⅰ)直接觀察莖葉圖可得$S_甲^2>S_乙^2$;
(Ⅱ)由題可知$A=\{y|y≥-\frac{1}{2}\}$,$B=\{x|-\sqrt{1-m}≤x≤\sqrt{1-m}\}$,由于p是q的必要條件,可得B⊆A,從而解不等式可得答案.

解答 解:(Ⅰ)觀察莖葉圖可得$S_甲^2$>$S_乙^2$;
(Ⅱ)由題可知$A=\{y|y≥-\frac{1}{2}\}$,$B=\{x|-\sqrt{1-m}≤x≤\sqrt{1-m}\}$
由于p是q的必要條件,∴B⊆A,
∴$-\sqrt{1-m}≥-\frac{1}{2}$,解得$m≥\frac{3}{4}$,綜上所述:$\frac{3}{4}≤m<1$.

點評 本題考查了莖葉圖以及必要條件、充分條件與充要條件的判定,考查了不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知tan2.5°=a,則sin5°(1-$\frac{tan2.5°}{tan5°}$)=a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知球的體積為36π,則該球主視圖的面積等于9π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列各個角中與2017°終邊相同的是( 。
A.-147°B.677°C.317°D.217°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)$y={log_2}({x^2}+\frac{2}{3}bx+\frac{c}{3})$的單調(diào)遞減區(qū)間是( 。
A.(-∞,-2)B.(-∞,1)C.(-2,4)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某校從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現(xiàn)從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在極坐標系中,點(2,$\frac{π}{3}$)到直線ρcosθ=2的距離為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=1+log2x與g(x)=2-x+1在同一直角坐標系下的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某服裝店經(jīng)營某種服裝,在某周內(nèi)獲利潤y(元)與該周每天銷售這種服裝件數(shù)x之間數(shù)據(jù)關系見表;
x3456789
y66697381899091
已知$\sum_{i=1}^7{{x_i}^2}$=280,$\sum_{i=1}^7{{y_i}^2}=45309$,$\sum_{i=1}^7{{x_i}{y_i}}=3487$線性回歸方程,
(1)求$\overline{x}$,$\overline{y}$;    
(2)畫出散點圖;
(3)求純利潤y與每天銷售件數(shù)x之間的回歸直線方程.
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{{y}_{i}}$=a+bx,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

同步練習冊答案