分析 (I)由題意求出A,T,利用周期公式求出ω,利用當x=$\frac{1}{3}$時取得最大值2,求出φ,即可得到函數(shù)的解析式.
(II)由x的范圍,可求πx+$\frac{π}{6}$的范圍,利用正弦函數(shù)的圖象和性質即可計算得解.
解答 (本題滿分為12分)
解:( I)由圖得:A=2.
由$\frac{T}{4}$=$\frac{1}{4}•$$\frac{2π}{ω}$=$\frac{5}{6}$-$\frac{1}{3}$=$\frac{1}{2}$,解得ω=π.…(4分)
由f($\frac{1}{3}$)=2sin($\frac{π}{3}$+Φ)=2,可得$\frac{π}{3}$+Φ=2kπ+$\frac{π}{2}$,解得Φ=2kπ+$\frac{π}{6}$,
又|Φ|<$\frac{π}{2}$,可得Φ=$\frac{π}{6}$,
∴f(x)=2sin(πx+$\frac{π}{6}$).…(8分)
( II)∵x∈$[-\frac{1}{2},\frac{1}{2}]$,
∴πx+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴-$\sqrt{3}$≤2sin(πx+$\frac{π}{6}$)≤2,即f(x)的最大值為2,最小值為-$\sqrt{3}$…(12分)
點評 本題是基礎題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的圖象和性質,注意函數(shù)的周期的求法,考查計算能力,?碱}型.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | y=x|x| | C. | y=x+$\frac{2}{x}$ | D. | y=x-$\frac{4}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com