分析 (1)根據(jù)對數(shù)函數(shù)的性質(zhì)得到關(guān)于x的不等式,解出即可;
(2)通過討論a的范圍,結(jié)合對數(shù)函數(shù)的性質(zhì)得到關(guān)于x的不等式組,解出即可.
解答 解:(1)由題意得:$\frac{1-x}{1+x}$>0,
即$\frac{x-1}{x+1}$<0,解得:-1<x<1,
故函數(shù)的定義域是(-1,1);
(2)a>1時,由$\left\{\begin{array}{l}{\frac{1-x}{1+x}>1}\\{-1<x<1}\end{array}\right.$,解得:x∈(-1,0),
0<a<1時,由$\left\{\begin{array}{l}{\frac{1-x}{1+x}<1}\\{-1<x<1}\end{array}\right.$,解得:x∈(0,1),
綜上,不等式的解集是(-1,0)∪(0,1).
點評 本題考查了對數(shù)函數(shù)的性質(zhì),考查分類討論思想以及轉(zhuǎn)化思想,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | -$\frac{3}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,4] | B. | (0,8) | C. | (2,5) | D. | (-∞,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com