3.設(shè)數(shù)列{an}是單調(diào)遞增的等差數(shù)列,a1=2且a1-1,a3,a5+5成等比數(shù)列,則a2017=( 。
A.1008B.1010C.2016D.2017

分析 利用等差數(shù)列通項公式、等比數(shù)列性質(zhì)列出方程,求出公差,由此能求出結(jié)果.

解答 解:∵數(shù)列{an}是單調(diào)遞增的等差數(shù)列,
a1=2且a1-1,a3,a5+5成等比數(shù)列,
∴${{a}_{3}}^{2}=({a}_{1}-1)({a}_{5}+5)$,
(2+2d)2=(2-1)(2+4d+5),
解得d=-$\frac{3}{2}$(舍)或d=$\frac{1}{2}$,
∴a2017=2+2016×($\frac{1}{2}$)=1010.
故選:B.

點(diǎn)評 本題考查等差數(shù)列的第2017項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實數(shù)x,y滿足x2+y2-2y=0,且(k-1)x-y-3k+5≤0恒成立,則實數(shù)k的取值范圍為k≥$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知m為實數(shù),i為虛數(shù)單位,若m+(m2-4)i>0,則$\frac{m+2i}{2-2i}$=( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}$圖象上一個動點(diǎn)作函數(shù)的切線,則切線傾斜角的范圍為( 。
A.$[0,\frac{3π}{4}]$B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[\frac{3π}{4},π)$D.$(\frac{π}{2},\frac{3π}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C1:ρ=cosθ-sinθ,曲線${C_2}:\left\{{\begin{array}{l}{x=\frac{1}{2}-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2相交于P、Q兩點(diǎn),求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線${C_1}:\left\{\begin{array}{l}x=1+2t\\ y=2-2t\end{array}\right.$(t為參數(shù),t∈R),曲線${C_2}:\left\{\begin{array}{l}x=2cosθ+2\\ y=2sinθ\end{array}\right.$(θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點(diǎn),x軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,求曲線C2的極坐標(biāo)方程;
(Ⅱ)若曲線C1與曲線C2相交于點(diǎn)A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|x≥-1},N={x|-2<x<2},則M∩N=( 。
A.(-∞,-1]B.[-1,2)C.(-1,2]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+y2-4x+6y=0的圓心坐標(biāo)是( 。
A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某一幾何體的三視圖,則該幾何體外接球的表面積為( 。
A.B.16πC.20πD.24π

查看答案和解析>>

同步練習(xí)冊答案