15.某企業(yè)為考察生產(chǎn)同一種產(chǎn)品的甲、乙兩條生產(chǎn)線的產(chǎn)品合格率,同時(shí)各抽取100件產(chǎn)品,檢驗(yàn)后得到如下列聯(lián)表:
生產(chǎn)線與產(chǎn)品合格數(shù)列聯(lián)表
合格不合格總計(jì)
甲線973100
乙線955100
總計(jì)1928200
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
請(qǐng)問甲、乙兩線生產(chǎn)的產(chǎn)品合格率在犯錯(cuò)誤不超過0.10的前提下是否有關(guān)?

分析 根據(jù)所給的數(shù)據(jù),代入求觀測值的公式,得到觀測值,把觀測值同臨界值進(jìn)行比較得到結(jié)論.

解答 解:K2的觀測值$k=\frac{{200×{{(97×5-95×3)}^2}}}{(97+3)×(95+5)×(97+95)×(3+5)}≈0.521≤2.706$,因此沒有充分的證據(jù)顯示甲、乙兩線生產(chǎn)的產(chǎn)品合格率有關(guān)系.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,本題解題的關(guān)鍵是理解臨界值對(duì)應(yīng)的概率的意義,能夠看出兩個(gè)變量之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1+tan3°)(1+tan42°)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二項(xiàng)式${({x^2}+\frac{a}{x})^5}$展開式所有項(xiàng)的系數(shù)和為-1,則展開式中x的系數(shù)為-80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=mt\\ y=\sqrt{3}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4ρ2sin2θ=4,直線l過曲線C的左焦點(diǎn)F.
(1)直線l與曲線C交于A,B兩點(diǎn),求|AB|;
(2)設(shè)曲線C的內(nèi)接矩形的周長為c,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為幾點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),($\frac{2\sqrt{3}}{3}$,$\frac{π}{2}$),圓C的參數(shù)方程$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一.在中國公元前11世紀(jì)時(shí),西周的商高提出了“勾三股四弦五”的特例,這是我國勾股定理的起源.公元一世紀(jì)時(shí),《九章算術(shù)》中給出勾股定理“勾股各自乘,并而開方除之,即弦”.用如今的話說,勾股定理是指直角三角形兩直角邊的平方和等于斜邊的平方,表達(dá)式即為a2+b2=c2,如果將該表達(dá)式推廣到空間的一個(gè)長方體中 (長方體的長、寬、高分別記為p、q、r,對(duì)角線長為d),應(yīng)有(  )
A.p+q+r=dB.p2+q2+r2=d2
C.p3+q3+r3=d3D.p2+q2+r2+pq+qr+pr=d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=eax+3x有大于零的極值點(diǎn),則 a的取值范圍是(-∞,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的S=( 。
A.4B.5C.$\sqrt{15}$+1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知全集U=R.集合A={x|x<3},B={x|x(x-1)<0},則A∩∁UB=( 。
A.{x|1<x<3}B.{x|x≤0或1≤x<3}C.{x|x<3}D.{x|1≤x<3}

查看答案和解析>>

同步練習(xí)冊(cè)答案