分析 畫出圖形,確定兩個球的關(guān)系,通過正四面體的體積,求出兩個球的半徑的比值,即可求棱長為a的正四面體的內(nèi)切球和外接球的體積之比.
解答 解:設(shè)正四面體為PABC,兩球球心重合,設(shè)為O.
設(shè)PO的延長線與底面ABC的交點(diǎn)為D,則PD為正四面體PABC的高,PD⊥底面ABC,且PO=R,OD=r,OD=正四面體PABC內(nèi)切球的高.
設(shè)正四面體PABC底面面積為S.
將球心O與四面體的4個頂點(diǎn)PABC全部連接,
可以得到4個全等的正三棱錐,球心為頂點(diǎn),以正四面體面為底面.
每個正三棱錐體積V1=$\frac{1}{3}$•S•r 而正四面體PABC體積V2=$\frac{1}{3}$•S•(R+r)
根據(jù)前面的分析,4•V1=V2,
所以,4•$\frac{1}{3}$•S•r=$\frac{1}{3}$•S•(R+r),
所以,R=3r,
所以棱長為a的正四面體的內(nèi)切球和外接球的體積之比為1:27.
故答案為1:27.
點(diǎn)評 本題是中檔題,考查正四面體的內(nèi)切球與外接球的關(guān)系,找出兩個球的球心重合,半徑的關(guān)系是解題的關(guān)鍵,考查空間想象能力,計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | (-2,3] | C. | (-∞,-2) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | $\frac{3}{5}$+$\frac{1}{5}$i | C. | $\frac{1}{5}$-$\frac{3}{5}$i | D. | $\frac{3}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{7}}}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{4}{3}})$ | D. | $({\root{4}{3},2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17}{2}$ | B. | $\frac{19}{2}$ | C. | $\frac{9}{10}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$ | B. | 若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$ | C. | 若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$ | D. | 若|$\overrightarrow{a}$|=0,則$\overrightarrow{a}$=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | πcm2 | B. | $\frac{3}{2}π$cm2 | C. | 3πcm2 | D. | 6πcm2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com