19.若函數(shù)f(x)=$\frac{{x}^{2}+a}{x+1}$在x=l處取得極值,則a=(  )
A.-1B.1C.2D.3

分析 由已知得導(dǎo)函數(shù),利用極值點(diǎn)列出方程,求出a即可.

解答 解:∵函數(shù)f(x)=$\frac{{x}^{2}+a}{x+1}$,
∴f′(x)=$\frac{2x(x+1)-{x}^{2}-a}{(x+1)^{2}}$,
∵函數(shù)f(x)=$\frac{{x}^{2}+a}{x+1}$在x=1處取得極值,
∴f′(1)=$\frac{4-1-a}{4}$=0,
解得a=3.
故選:D.

點(diǎn)評(píng) 本題主要考查極值的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類討論等綜合解題能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線經(jīng)過(3,-4),則此雙曲線的離心率為( 。
A.$\frac{\sqrt{7}}{4}$B.$\frac{5}{4}$C.$\frac{25}{9}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,某校高一(1)班全體男生的一次數(shù)學(xué)測(cè)試的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù)及分?jǐn)?shù)在[80,90)之間的男生人數(shù);
(2)根據(jù)頻率分布直方圖,估計(jì)該班全體男生的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).(3)從分?jǐn)?shù)在[80,100]中抽取兩個(gè)男生,求抽取的兩男生分別來自[80,90)、[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=n(n∈N*),又等差數(shù)列{bn}滿足b1=a1,b1+1,b2+1,b5-1成等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)右頂點(diǎn)A且與其中一條漸近線平行,又與另一條漸近線交于點(diǎn)B,滿足三角形AOB的面積為$\frac{{a}^{2}}{4}$,則該雙曲線的離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,集合M={x|2x(x-2)8},N={x|1n|x-1|>0},則M∩CN=( 。
A.(-1,3)B.[0,2]C.(-1,0]∪[2,3)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某公司慶;顒(dòng)需從甲、乙、丙等5名志愿者中選2名擔(dān)任翻譯,2名擔(dān)任向?qū)В有1名機(jī)動(dòng)人員,為來參加活動(dòng)的外事人員提供服務(wù),并且翻譯和向?qū)Ф急仨氂幸蝗诉x自甲、乙、丙,則不同的選法有( 。
A.20 種B.22 種C.24 種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.做一個(gè)無蓋的圓柱形水桶,若要使其體積是64π,且用料最省,則圓柱的底面半徑為(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案