9.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線經(jīng)過(3,-4),則此雙曲線的離心率為(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{5}{4}$C.$\frac{25}{9}$D.$\frac{5}{3}$

分析 利用已知條件列出方程,求解a,b關(guān)系,然后求解離心率.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線經(jīng)過(3,-4),
可得$\frac{a}=\frac{4}{3}$,即$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{16}{9}$,
解得e=$\frac{5}{3}$.
故選:D.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在區(qū)間[0,π]上隨機取一個數(shù),使函數(shù)y=cosx的函數(shù)值落在$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$上的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“m=1”是“直線l1:x+(1+m)y=2-m與l2:2mx+4y=-16平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標系中,圓C的方程為ρ=2acosθ(a≠θ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t為參數(shù))
(1)求圓C的直角坐標方程和直線l的普通方程
(2)若直線l與圓C恒有兩個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,已知$\frac{a+c}$=$\frac{a+b-c}{a+b}$
(Ⅰ)求角A
(Ⅱ)若a=15,b=10,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定理:若函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,且方程f(x)=0有n個根,則這n個根之和為na(n∈N*).
利用上述定理,求解下列問題:
(1)已知函數(shù)g(x)=sin2x+1,x∈[-$\frac{5π}{2}$,4π],設(shè)函數(shù)y=g(x)的圖象關(guān)于直線x=a對稱,求a的值及方程g(x)=0的所有根之和;
(2)若關(guān)于x的方程2x4+2x+2-x-cosx-m2=0在實數(shù)集上有唯一的解,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,已知a=bcosC+$\sqrt{3}$csinB.
(1)求角B;
(2)若b=1,c=$\sqrt{3}$,求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{{x}^{2}+a}{x+1}$在x=l處取得極值,則a=( 。
A.-1B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案