6.某工地決定建造一批房型為長方體、房高為2.5米的簡易房,房的前后墻用2.5米高的彩色鋼板,兩側(cè)墻用2.5米的高的復(fù)合鋼板.兩種鋼板的價(jià)格都用長度來計(jì)算(即:鋼板的高均為2.5米.用鋼板的長度乘以單價(jià)就是這塊鋼板的價(jià)格).已知彩色鋼板每米單價(jià)為450元.復(fù)合鋼板每米單價(jià)為200元,房的地面不需另買材料,房頂用其它材料建造,每平方米材料費(fèi)200元,每套房的材料費(fèi)控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x(米),兩側(cè)墻的長為y(米),建造一套房所需材料費(fèi)為P(元),試用x,y表示P;
(2)試求一套簡易房面積S的最大值是多少?當(dāng)S最大時(shí),前面墻的長度應(yīng)設(shè)計(jì)為多少米?

分析 (1)根據(jù)題意可分別求得前面墻,兩側(cè)墻和房頂?shù)馁M(fèi)用,三者相加即可求得P.
(2)利用P的表達(dá)式和基本不等式求得關(guān)于$\sqrt{S}$的不等式關(guān)系,求得$\sqrt{S}$的范圍,以及等號(hào)成立條件求得x的值.

解答 解:(1)依題得,p=2x×450+2y×200+xy×200=900x+400y+200xy
即p=900x+400y+200xy;
(2)∵S=xy,∴p=900x+400y+200xy≥$2\sqrt{900×400S}$+200S=200S+1200$\sqrt{S}$,
又因?yàn)閜≤3200,所以200S+1200$\sqrt{S}$≤3200,
解得-16≤$\sqrt{S}$≤10,
∵S>0,∴0<S≤100,當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{900x=400y}\\{xy=100}\end{array}\right.$,即x=$\frac{20}{3}$時(shí)S取得最大值.
答:每套簡易房面積S的最大值是100平方米,當(dāng)S最大時(shí)前面墻的長度是$\frac{20}{3}$米.

點(diǎn)評 本題主要考查了基本不等式在最值問題中的應(yīng)用.考查了學(xué)生分析問題和解決實(shí)際問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知實(shí)數(shù)a為常數(shù),U=R,設(shè)集合A={x|$\frac{x-3}{x+1}$>0},B={x|y=$\sqrt{lo{g}_{2}x-1}$},C={x|x2-(4+a)x+4a≤0}.
(1)求A∩B;
(2)若∁UA⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{a}$+$\overrightarrow$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CA}$C.$\overrightarrow{BD}$D.$\overrightarrow{DB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知2a=3,則a=log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b,c∈R,且a>b,則( 。
A.ac>bcB.$\frac{1}{a}$<$\frac{1}$C.a2>b2D.a-c>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)直線l的方向向量為(1,-1,1),平面α的一個(gè)法向量為(-1,1,-1),則直線l與平面α的位置關(guān)系是(  )
A.l?αB.l∥αC.l⊥αD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過點(diǎn)M(-3,2),N(-2,3)的直線傾斜角是( 。
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y≥-2}\end{array}\right.$,則z=2x+y的最小值為(  )
A.6B.10C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓O為Rt△ABC的外接圓,AB=AC,BC=4,過圓心O的直線l交圓O于P,Q兩點(diǎn),則$\overrightarrow{BP}•\overrightarrow{CQ}$的取值范圍是(  )
A.[-8,-1]B.[-8,0]C.[-16,-1]D.[-16,0]

查看答案和解析>>

同步練習(xí)冊答案