【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.

【答案】(1);(2)詳見解析.

【解析】

試題分析:(1)記事件{從甲箱中摸出的1個球是紅球},{從乙箱中摸出的1個球是紅球}

{顧客抽獎1次獲一等獎},{顧客抽獎1次獲二等獎},{顧客抽獎1次能獲獎},則可知

相互獨立,互斥,互斥,且,,,再

利用概率的加法公式即可求解;(2)分析題意可知,分別求得,,,即可知的概率分布及其期望.

試題解析:(1)記事件{從甲箱中摸出的1個球是紅球},{從乙箱中摸出的1個球是紅球}

{顧客抽獎1次獲一等獎},{顧客抽獎1次獲二等獎},{顧客抽獎1次能獲獎},由題意,相互獨立,互斥,互斥,且,,

,,,

,故所求概率為;(2)顧客抽獎3次獨立重復試驗,由(1)知,顧客抽獎1次獲一等獎的概率為,

于是,,

,故的分布列為

2

0

1

3

的數(shù)學期望為 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某班一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.

)求全班人數(shù)及分數(shù)在之間的頻率;

)現(xiàn)從分數(shù)在之間的試卷中任取 3 份分析學生情況,設抽取的試卷分數(shù)在的份數(shù)為 ,求的分布列和數(shù)學望期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖甲,直角梯形中, ,點分別在上,且, ,現(xiàn)將梯形沿折起,使平面與平面垂直(如圖乙).

(Ⅰ)求證: 平面;

(II)當的長為何值時,二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.

(1)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;

(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來篷勃發(fā)展的新機遇,2016年雙11期間,某購物平臺的銷售業(yè)績高達一千多億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.

(Ⅰ)請完成如下列聯(lián)表;

(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認為商品好評與服務好評有關?

(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),且f(2).

(1)求實數(shù)mn的值;

(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (ab>0)的離心率為,點P(0,1)和點A(m,n)(m≠0)都在橢圓C上,直線PAx軸于點M.

(1)求橢圓C的方程,并求點M的坐標(用m,n表示);

(2)設O為原點,點B與點A關于x軸對稱,直線PBx軸于點N.問:y軸上是否存在點Q,使得∠OQM=∠ONQ?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,越來越多的人參與了潛水這項活動。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時是否會耳鳴,下圖為其等高條形圖:

繪出2×2列聯(lián)表;

②根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.05的前提下認為耳鳴與性別有關系?

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

同步練習冊答案