5.已知△OBC中,點(diǎn)A是線段BC的中點(diǎn),點(diǎn)D是線段OB的一個(gè)靠近O的三等分點(diǎn),設(shè)$\overrightarrow{OB}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow$
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OA}$;
(2)若點(diǎn)E是線段OA靠近A的三等分點(diǎn),證明$\overrightarrow{DE}$平行于$\overrightarrow{BC}$.

分析 (1)根據(jù)向量的三角形法則即可求出,
(2)根向量的三角形法則和向量的數(shù)乘運(yùn)算可得$\overrightarrow{DE}$=$\frac{1}{6}$$\overrightarrow{BC}$,問(wèn)題得以證明

解答 解:(1)$\overrightarrow{OA}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$,
(2)證明:∵點(diǎn)D是線段OB的一個(gè)靠近B的三等分點(diǎn),點(diǎn)E是線段OA靠近A的三等分點(diǎn),
∴$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OB}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{OE}$=$\frac{1}{3}$$\overrightarrow{OA}$=$\frac{1}{3}$($\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$)=$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$,
∴$\overrightarrow{DE}$=$\overrightarrow{OE}$-$\overrightarrow{OD}$=-$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$,
∵$\overrightarrow{BC}$=$\overrightarrow{OC}$-$\overrightarrow{OB}$=$\overrightarrow$-$\overrightarrow{a}$,
∴$\overrightarrow{DE}$=$\frac{1}{6}$$\overrightarrow{BC}$,
∴$\overrightarrow{DE}$平行于$\overrightarrow{BC}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是向量加減法的三角形法則和向量的共線定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知P是△ABC內(nèi)一點(diǎn),且滿足2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$,那么S△PBC:SPCA:S△PAB等于( 。
A.4:3:2B.2:3:4C.$\frac{1}{4}$:$\frac{1}{3}$:$\frac{1}{2}$D.$\frac{1}{2}$:$\frac{1}{3}$:$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀12420
成績(jī)不優(yōu)秀384680
總計(jì)5050100
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C,的對(duì)邊分別為a,b,c,已知向量$\overrightarrow{m}$=(cos$\frac{3π}{2}$,-sin$\frac{3π}{2}$),$\overrightarrow{n}$=(cos$\frac{A}{2}$,sin$\frac{A}{2}$),且滿足|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$
(1)求角A的大;
(2)若b+c=$\sqrt{3}$a,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$y=|{sin({2x-\frac{π}{6}})}|$,以下說(shuō)法正確的是( 。
A.函數(shù)的最小正周期為$\frac{π}{4}$B.函數(shù)是偶函數(shù)
C.函數(shù)圖象的一條對(duì)稱軸為$x=\frac{π}{3}$D.函數(shù)在$[{\frac{2π}{3},\frac{5π}{6}}]$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.從1,2,3,4中任取兩個(gè)數(shù),記作a,b,則兩數(shù)之和a+b小于5的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知復(fù)數(shù)${z_1}=sinx+λi,{z_2}=({sinx+\sqrt{3}cosx})-i$(λ,x∈R,i為虛數(shù)單位).
(1)若2z1=i•z2,且$x∈({0,\frac{π}{2}})$,求x與λ的值;
(2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對(duì)應(yīng)的向量分別為$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$,且$\overrightarrow{O{Z_1}}⊥\overrightarrow{O{Z_2}}$,λ=f(x),求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.為了解某社區(qū)物業(yè)部門對(duì)本小區(qū)業(yè)主的服務(wù)情況,隨機(jī)訪問(wèn)了100位業(yè)主,根據(jù)這100位業(yè)主對(duì)物業(yè)部門的評(píng)分情況,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].由于某種原因,有個(gè)數(shù)據(jù)出現(xiàn)污損,請(qǐng)根據(jù)圖中其他數(shù)據(jù)分析,評(píng)分不小于80分的業(yè)主有( 。┪唬
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“若$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}\;(n∈{{N}^*})$,則數(shù)列{an}為遞減數(shù)列”的逆否命題是若數(shù)列數(shù)列{an}不為遞減數(shù)列,則$\frac{{a}_{n}+{a}_{n+2}}{2}$≥an+1,n∈N*.

查看答案和解析>>

同步練習(xí)冊(cè)答案