A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或0 |
分析 由已知分別求出cosα、sin(α+β)的值,然后利用“拆角配角”的方法分類求出sinβ,則答案可求.
解答 解:∵0<α<$\frac{π}{2}$,sinα=$\frac{3}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$.
∵0<α<$\frac{π}{2}$<β<π,
∴$\frac{π}{2}$<α+β<$\frac{3π}{2}$.
又cos(α+β)=-$\frac{4}{5}$,
∴sin(α+β)=±$\sqrt{1-co{s}^{2}(α+β)}$=±$\frac{3}{5}$.
若sin(α+β)=$\frac{3}{5}$,則sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{24}{25}$;
若sin(α+β)=-$\frac{3}{5}$,則sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα
=(-$\frac{3}{5}$)×$\frac{4}{5}$-(-$\frac{4}{5}$)×$\frac{3}{5}$=0(舍).
∴sinβ=$\frac{24}{25}$.
故選:B.
點(diǎn)評 本題考查兩角和與差的正弦,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,關(guān)鍵是“拆角配角”思想的應(yīng)用,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m⊥α,m∥n,n?β,則α⊥β | B. | 若平面α⊥β,m⊥α,則m⊥β | ||
C. | 若m∥α,α∥β,則m∥β | D. | 若直線m∥n,n?α,則m∥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{\sqrt{5}}{2}$) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{5}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 216 | B. | 100 | C. | 120 | D. | 180 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 2 | C. | 4 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com